upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/arch/arm/cpu/armv7/exynos/dmc_init_ddr3.c

838 lines
26 KiB

/*
* DDR3 mem setup file for board based on EXYNOS5
*
* Copyright (C) 2012 Samsung Electronics
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <config.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cpu.h>
#include <asm/arch/dmc.h>
#include <asm/arch/power.h>
#include "common_setup.h"
#include "exynos5_setup.h"
#include "clock_init.h"
#define TIMEOUT_US 10000
#define NUM_BYTE_LANES 4
#define DEFAULT_DQS 8
#define DEFAULT_DQS_X4 (DEFAULT_DQS << 24) || (DEFAULT_DQS << 16) \
|| (DEFAULT_DQS << 8) || (DEFAULT_DQS << 0)
#ifdef CONFIG_EXYNOS5250
static void reset_phy_ctrl(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
writel(DDR3PHY_CTRL_PHY_RESET_OFF, &clk->lpddr3phy_ctrl);
writel(DDR3PHY_CTRL_PHY_RESET, &clk->lpddr3phy_ctrl);
}
int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
{
unsigned int val;
struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl;
struct exynos5_dmc *dmc;
int i;
phy0_ctrl = (struct exynos5_phy_control *)samsung_get_base_dmc_phy();
phy1_ctrl = (struct exynos5_phy_control *)(samsung_get_base_dmc_phy()
+ DMC_OFFSET);
dmc = (struct exynos5_dmc *)samsung_get_base_dmc_ctrl();
if (reset)
reset_phy_ctrl();
/* Set Impedance Output Driver */
val = (mem->impedance << CA_CK_DRVR_DS_OFFSET) |
(mem->impedance << CA_CKE_DRVR_DS_OFFSET) |
(mem->impedance << CA_CS_DRVR_DS_OFFSET) |
(mem->impedance << CA_ADR_DRVR_DS_OFFSET);
writel(val, &phy0_ctrl->phy_con39);
writel(val, &phy1_ctrl->phy_con39);
/* Set Read Latency and Burst Length for PHY0 and PHY1 */
val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
(mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
writel(val, &phy0_ctrl->phy_con42);
writel(val, &phy1_ctrl->phy_con42);
/* ZQ Calibration */
if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
&phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
/* DQ Signal */
writel(mem->phy0_pulld_dqs, &phy0_ctrl->phy_con14);
writel(mem->phy1_pulld_dqs, &phy1_ctrl->phy_con14);
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
| (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT),
&dmc->concontrol);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
/* DQS Signal */
writel(mem->phy0_dqs, &phy0_ctrl->phy_con4);
writel(mem->phy1_dqs, &phy1_ctrl->phy_con4);
writel(mem->phy0_dq, &phy0_ctrl->phy_con6);
writel(mem->phy1_dq, &phy1_ctrl->phy_con6);
writel(mem->phy0_tFS, &phy0_ctrl->phy_con10);
writel(mem->phy1_tFS, &phy1_ctrl->phy_con10);
val = (mem->ctrl_start_point << PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
/* Start DLL locking */
writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
&phy0_ctrl->phy_con12);
writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
&phy1_ctrl->phy_con12);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&dmc->concontrol);
/* Memory Channel Inteleaving Size */
writel(mem->iv_size, &dmc->ivcontrol);
writel(mem->memconfig, &dmc->memconfig0);
writel(mem->memconfig, &dmc->memconfig1);
writel(mem->membaseconfig0, &dmc->membaseconfig0);
writel(mem->membaseconfig1, &dmc->membaseconfig1);
/* Precharge Configuration */
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&dmc->prechconfig);
/* Power Down mode Configuration */
writel(mem->dpwrdn_cyc << PWRDNCONFIG_DPWRDN_CYC_SHIFT |
mem->dsref_cyc << PWRDNCONFIG_DSREF_CYC_SHIFT,
&dmc->pwrdnconfig);
/* TimingRow, TimingData, TimingPower and Timingaref
* values as per Memory AC parameters
*/
writel(mem->timing_ref, &dmc->timingref);
writel(mem->timing_row, &dmc->timingrow);
writel(mem->timing_data, &dmc->timingdata);
writel(mem->timing_power, &dmc->timingpower);
/* Send PALL command */
dmc_config_prech(mem, &dmc->directcmd);
/* Send NOP, MRS and ZQINIT commands */
dmc_config_mrs(mem, &dmc->directcmd);
if (mem->gate_leveling_enable) {
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
val |= BYTE_RDLVL_EN;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = (mem->ctrl_start_point <<
PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
(mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
val |= RDLVL_GATE_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
val |= BYTE_RDLVL_EN;
val |= CTRL_SHGATE;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = PHY_CON1_RESET_VAL;
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy0_ctrl->phy_con1);
writel(val, &phy1_ctrl->phy_con1);
writel(CTRL_RDLVL_GATE_ENABLE, &dmc->rdlvl_config);
i = TIMEOUT_US;
while ((readl(&dmc->phystatus) &
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1)) !=
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1) && i > 0) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &dmc->rdlvl_config);
writel(0, &phy0_ctrl->phy_con14);
writel(0, &phy1_ctrl->phy_con14);
val = (mem->ctrl_start_point <<
PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
(mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
(mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
}
/* Send PALL command */
dmc_config_prech(mem, &dmc->directcmd);
writel(mem->memcontrol, &dmc->memcontrol);
/* Set DMC Concontrol and enable auto-refresh counter */
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
| (mem->aref_en << CONCONTROL_AREF_EN_SHIFT), &dmc->concontrol);
return 0;
}
#endif
#ifdef CONFIG_EXYNOS5420
/**
* RAM address to use in the test.
*
* We'll use 4 words at this address and 4 at this address + 0x80 (Ares
* interleaves channels every 128 bytes). This will allow us to evaluate all of
* the chips in a 1 chip per channel (2GB) system and half the chips in a 2
* chip per channel (4GB) system. We can't test the 2nd chip since we need to
* do tests before the 2nd chip is enabled. Looking at the 2nd chip isn't
* critical because the 1st and 2nd chip have very similar timings (they'd
* better have similar timings, since there's only a single adjustment that is
* shared by both chips).
*/
const unsigned int test_addr = CONFIG_SYS_SDRAM_BASE;
/* Test pattern with which RAM will be tested */
static const unsigned int test_pattern[] = {
0x5a5a5a5a,
0xa5a5a5a5,
0xf0f0f0f0,
0x0f0f0f0f,
};
/**
* This function is a test vector for sw read leveling,
* it compares the read data with the written data.
*
* @param ch DMC channel number
* @param byte_lane which DQS byte offset,
* possible values are 0,1,2,3
* @return TRUE if memory was good, FALSE if not.
*/
static bool dmc_valid_window_test_vector(int ch, int byte_lane)
{
unsigned int read_data;
unsigned int mask;
int i;
mask = 0xFF << (8 * byte_lane);
for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
read_data = readl(test_addr + i * 4 + ch * 0x80);
if ((read_data & mask) != (test_pattern[i] & mask))
return false;
}
return true;
}
/**
* This function returns current read offset value.
*
* @param phy_ctrl pointer to the current phy controller
*/
static unsigned int dmc_get_read_offset_value(struct exynos5420_phy_control
*phy_ctrl)
{
return readl(&phy_ctrl->phy_con4);
}
/**
* This function performs resync, so that slave DLL is updated.
*
* @param phy_ctrl pointer to the current phy controller
*/
static void ddr_phy_set_do_resync(struct exynos5420_phy_control *phy_ctrl)
{
setbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
clrbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
}
/**
* This function sets read offset value register with 'offset'.
*
* ...we also call call ddr_phy_set_do_resync().
*
* @param phy_ctrl pointer to the current phy controller
* @param offset offset to read DQS
*/
static void dmc_set_read_offset_value(struct exynos5420_phy_control *phy_ctrl,
unsigned int offset)
{
writel(offset, &phy_ctrl->phy_con4);
ddr_phy_set_do_resync(phy_ctrl);
}
/**
* Convert a 2s complement byte to a byte with a sign bit.
*
* NOTE: you shouldn't use normal math on the number returned by this function.
* As an example, -10 = 0xf6. After this function -10 = 0x8a. If you wanted
* to do math and get the average of 10 and -10 (should be 0):
* 0x8a + 0xa = 0x94 (-108)
* 0x94 / 2 = 0xca (-54)
* ...and 0xca = sign bit plus 0x4a, or -74
*
* Also note that you lose the ability to represent -128 since there are two
* representations of 0.
*
* @param b The byte to convert in two's complement.
* @return The 7-bit value + sign bit.
*/
unsigned char make_signed_byte(signed char b)
{
if (b < 0)
return 0x80 | -b;
else
return b;
}
/**
* Test various shifts starting at 'start' and going to 'end'.
*
* For each byte lane, we'll walk through shift starting at 'start' and going
* to 'end' (inclusive). When we are finally able to read the test pattern
* we'll store the value in the results array.
*
* @param phy_ctrl pointer to the current phy controller
* @param ch channel number
* @param start the start shift. -127 to 127
* @param end the end shift. -127 to 127
* @param results we'll store results for each byte lane.
*/
void test_shifts(struct exynos5420_phy_control *phy_ctrl, int ch,
int start, int end, int results[NUM_BYTE_LANES])
{
int incr = (start < end) ? 1 : -1;
int byte_lane;
for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
int shift;
dmc_set_read_offset_value(phy_ctrl, DEFAULT_DQS_X4);
results[byte_lane] = DEFAULT_DQS;
for (shift = start; shift != (end + incr); shift += incr) {
unsigned int byte_offsetr;
unsigned int offsetr;
byte_offsetr = make_signed_byte(shift);
offsetr = dmc_get_read_offset_value(phy_ctrl);
offsetr &= ~(0xFF << (8 * byte_lane));
offsetr |= (byte_offsetr << (8 * byte_lane));
dmc_set_read_offset_value(phy_ctrl, offsetr);
if (dmc_valid_window_test_vector(ch, byte_lane)) {
results[byte_lane] = shift;
break;
}
}
}
}
/**
* This function performs SW read leveling to compensate DQ-DQS skew at
* receiver it first finds the optimal read offset value on each DQS
* then applies the value to PHY.
*
* Read offset value has its min margin and max margin. If read offset
* value exceeds its min or max margin, read data will have corruption.
* To avoid this we are doing sw read leveling.
*
* SW read leveling is:
* 1> Finding offset value's left_limit and right_limit
* 2> and calculate its center value
* 3> finally programs that center value to PHY
* 4> then PHY gets its optimal offset value.
*
* @param phy_ctrl pointer to the current phy controller
* @param ch channel number
* @param coarse_lock_val The coarse lock value read from PHY_CON13.
* (0 - 0x7f)
*/
static void software_find_read_offset(struct exynos5420_phy_control *phy_ctrl,
int ch, unsigned int coarse_lock_val)
{
unsigned int offsetr_cent;
int byte_lane;
int left_limit;
int right_limit;
int left[NUM_BYTE_LANES];
int right[NUM_BYTE_LANES];
int i;
/* Fill the memory with test patterns */
for (i = 0; i < ARRAY_SIZE(test_pattern); i++)
writel(test_pattern[i], test_addr + i * 4 + ch * 0x80);
/* Figure out the limits we'll test with; keep -127 < limit < 127 */
left_limit = DEFAULT_DQS - coarse_lock_val;
right_limit = DEFAULT_DQS + coarse_lock_val;
if (right_limit > 127)
right_limit = 127;
/* Fill in the location where reads were OK from left and right */
test_shifts(phy_ctrl, ch, left_limit, right_limit, left);
test_shifts(phy_ctrl, ch, right_limit, left_limit, right);
/* Make a final value by taking the center between the left and right */
offsetr_cent = 0;
for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
int temp_center;
unsigned int vmwc;
temp_center = (left[byte_lane] + right[byte_lane]) / 2;
vmwc = make_signed_byte(temp_center);
offsetr_cent |= vmwc << (8 * byte_lane);
}
dmc_set_read_offset_value(phy_ctrl, offsetr_cent);
}
int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
struct exynos5420_power *power =
(struct exynos5420_power *)samsung_get_base_power();
struct exynos5420_phy_control *phy0_ctrl, *phy1_ctrl;
struct exynos5420_dmc *drex0, *drex1;
struct exynos5420_tzasc *tzasc0, *tzasc1;
struct exynos5_power *pmu;
uint32_t val, n_lock_r, n_lock_w_phy0, n_lock_w_phy1;
uint32_t lock0_info, lock1_info;
int chip;
int i;
phy0_ctrl = (struct exynos5420_phy_control *)samsung_get_base_dmc_phy();
phy1_ctrl = (struct exynos5420_phy_control *)(samsung_get_base_dmc_phy()
+ DMC_OFFSET);
drex0 = (struct exynos5420_dmc *)samsung_get_base_dmc_ctrl();
drex1 = (struct exynos5420_dmc *)(samsung_get_base_dmc_ctrl()
+ DMC_OFFSET);
tzasc0 = (struct exynos5420_tzasc *)samsung_get_base_dmc_tzasc();
tzasc1 = (struct exynos5420_tzasc *)(samsung_get_base_dmc_tzasc()
+ DMC_OFFSET);
pmu = (struct exynos5_power *)EXYNOS5420_POWER_BASE;
/* Enable PAUSE for DREX */
setbits_le32(&clk->pause, ENABLE_BIT);
/* Enable BYPASS mode */
setbits_le32(&clk->bpll_con1, BYPASS_EN);
writel(MUX_BPLL_SEL_FOUTBPLL, &clk->src_cdrex);
do {
val = readl(&clk->mux_stat_cdrex);
val &= BPLL_SEL_MASK;
} while (val != FOUTBPLL);
clrbits_le32(&clk->bpll_con1, BYPASS_EN);
/* Specify the DDR memory type as DDR3 */
val = readl(&phy0_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy0_ctrl->phy_con0);
val = readl(&phy1_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy1_ctrl->phy_con0);
/* Set Read Latency and Burst Length for PHY0 and PHY1 */
val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
(mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
writel(val, &phy0_ctrl->phy_con42);
writel(val, &phy1_ctrl->phy_con42);
val = readl(&phy0_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy0_ctrl->phy_con26);
val = readl(&phy1_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy1_ctrl->phy_con26);
/*
* Set Driver strength for CK, CKE, CS & CA to 0x7
* Set Driver strength for Data Slice 0~3 to 0x7
*/
val = (0x7 << CA_CK_DRVR_DS_OFFSET) | (0x7 << CA_CKE_DRVR_DS_OFFSET) |
(0x7 << CA_CS_DRVR_DS_OFFSET) | (0x7 << CA_ADR_DRVR_DS_OFFSET);
val |= (0x7 << DA_3_DS_OFFSET) | (0x7 << DA_2_DS_OFFSET) |
(0x7 << DA_1_DS_OFFSET) | (0x7 << DA_0_DS_OFFSET);
writel(val, &phy0_ctrl->phy_con39);
writel(val, &phy1_ctrl->phy_con39);
/* ZQ Calibration */
if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
&phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
clrbits_le32(&phy0_ctrl->phy_con16, ZQ_CLK_DIV_EN);
clrbits_le32(&phy1_ctrl->phy_con16, ZQ_CLK_DIV_EN);
/* DQ Signal */
val = readl(&phy0_ctrl->phy_con14);
val |= mem->phy0_pulld_dqs;
writel(val, &phy0_ctrl->phy_con14);
val = readl(&phy1_ctrl->phy_con14);
val |= mem->phy1_pulld_dqs;
writel(val, &phy1_ctrl->phy_con14);
val = MEM_TERM_EN | PHY_TERM_EN;
writel(val, &drex0->phycontrol0);
writel(val, &drex1->phycontrol0);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex0->concontrol);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex1->concontrol);
do {
val = readl(&drex0->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
do {
val = readl(&drex1->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
clrbits_le32(&drex0->concontrol, DFI_INIT_START);
clrbits_le32(&drex1->concontrol, DFI_INIT_START);
update_reset_dll(&drex0->phycontrol0, DDR_MODE_DDR3);
update_reset_dll(&drex1->phycontrol0, DDR_MODE_DDR3);
/*
* Set Base Address:
* 0x2000_0000 ~ 0x5FFF_FFFF
* 0x6000_0000 ~ 0x9FFF_FFFF
*/
/* MEMBASECONFIG0 */
val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_0) |
DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig0);
writel(val, &tzasc1->membaseconfig0);
/* MEMBASECONFIG1 */
val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_1) |
DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig1);
writel(val, &tzasc1->membaseconfig1);
/*
* Memory Channel Inteleaving Size
* Ares Channel interleaving = 128 bytes
*/
/* MEMCONFIG0/1 */
writel(mem->memconfig, &tzasc0->memconfig0);
writel(mem->memconfig, &tzasc1->memconfig0);
writel(mem->memconfig, &tzasc0->memconfig1);
writel(mem->memconfig, &tzasc1->memconfig1);
/* Precharge Configuration */
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex0->prechconfig0);
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex1->prechconfig0);
/*
* TimingRow, TimingData, TimingPower and Timingaref
* values as per Memory AC parameters
*/
writel(mem->timing_ref, &drex0->timingref);
writel(mem->timing_ref, &drex1->timingref);
writel(mem->timing_row, &drex0->timingrow0);
writel(mem->timing_row, &drex1->timingrow0);
writel(mem->timing_data, &drex0->timingdata0);
writel(mem->timing_data, &drex1->timingdata0);
writel(mem->timing_power, &drex0->timingpower0);
writel(mem->timing_power, &drex1->timingpower0);
if (reset) {
/*
* Send NOP, MRS and ZQINIT commands
* Sending MRS command will reset the DRAM. We should not be
* reseting the DRAM after resume, this will lead to memory
* corruption as DRAM content is lost after DRAM reset
*/
dmc_config_mrs(mem, &drex0->directcmd);
dmc_config_mrs(mem, &drex1->directcmd);
}
/*
* Get PHY_CON13 from both phys. Gate CLKM around reading since
* PHY_CON13 is glitchy when CLKM is running. We're paranoid and
* wait until we get a "fine lock", though a coarse lock is probably
* OK (we only use the coarse numbers below). We try to gate the
* clock for as short a time as possible in case SDRAM is somehow
* sensitive. sdelay(10) in the loop is arbitrary to make sure
* there is some time for PHY_CON13 to get updated. In practice
* no delay appears to be needed.
*/
val = readl(&clk->gate_bus_cdrex);
while (true) {
writel(val & ~0x1, &clk->gate_bus_cdrex);
lock0_info = readl(&phy0_ctrl->phy_con13);
writel(val, &clk->gate_bus_cdrex);
if ((lock0_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
break;
sdelay(10);
}
while (true) {
writel(val & ~0x2, &clk->gate_bus_cdrex);
lock1_info = readl(&phy1_ctrl->phy_con13);
writel(val, &clk->gate_bus_cdrex);
if ((lock1_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
break;
sdelay(10);
}
if (!reset) {
/*
* During Suspend-Resume & S/W-Reset, as soon as PMU releases
* pad retention, CKE goes high. This causes memory contents
* not to be retained during DRAM initialization. Therfore,
* there is a new control register(0x100431e8[28]) which lets us
* release pad retention and retain the memory content until the
* initialization is complete.
*/
writel(PAD_RETENTION_DRAM_COREBLK_VAL,
&power->pad_retention_dram_coreblk_option);
do {
val = readl(&power->pad_retention_dram_status);
} while (val != 0x1);
/*
* CKE PAD retention disables DRAM self-refresh mode.
* Send auto refresh command for DRAM refresh.
*/
for (i = 0; i < 128; i++) {
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(DIRECT_CMD_REFA |
(chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(DIRECT_CMD_REFA |
(chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
}
}
if (mem->gate_leveling_enable) {
writel(PHY_CON0_RESET_VAL, &phy0_ctrl->phy_con0);
writel(PHY_CON0_RESET_VAL, &phy1_ctrl->phy_con0);
setbits_le32(&phy0_ctrl->phy_con0, P0_CMD_EN);
setbits_le32(&phy1_ctrl->phy_con0, P0_CMD_EN);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = readl(&phy0_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy1_ctrl->phy_con1);
n_lock_w_phy0 = (lock0_info & CTRL_LOCK_COARSE_MASK) >> 2;
n_lock_r = readl(&phy0_ctrl->phy_con12);
n_lock_r &= ~CTRL_DLL_ON;
n_lock_r |= n_lock_w_phy0;
writel(n_lock_r, &phy0_ctrl->phy_con12);
n_lock_w_phy1 = (lock1_info & CTRL_LOCK_COARSE_MASK) >> 2;
n_lock_r = readl(&phy1_ctrl->phy_con12);
n_lock_r &= ~CTRL_DLL_ON;
n_lock_r |= n_lock_w_phy1;
writel(n_lock_r, &phy1_ctrl->phy_con12);
val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
setbits_le32(&phy0_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy1_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy0_ctrl->phy_con0, CTRL_SHGATE);
setbits_le32(&phy1_ctrl->phy_con0, CTRL_SHGATE);
val = readl(&phy0_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy1_ctrl->phy_con1);
writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config);
i = TIMEOUT_US;
while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config);
writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config);
i = TIMEOUT_US;
while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex1->rdlvl_config);
writel(0, &phy0_ctrl->phy_con14);
writel(0, &phy1_ctrl->phy_con14);
val = (0x3 << DIRECT_CMD_BANK_SHIFT);
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
/* Common Settings for Leveling */
val = PHY_CON12_RESET_VAL;
writel((val + n_lock_w_phy0), &phy0_ctrl->phy_con12);
writel((val + n_lock_w_phy1), &phy1_ctrl->phy_con12);
setbits_le32(&phy0_ctrl->phy_con2, DLL_DESKEW_EN);
setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN);
}
/*
* Do software read leveling
*
* Do this before we turn on auto refresh since the auto refresh can
* be in conflict with the resync operation that's part of setting
* read leveling.
*/
if (!reset) {
/* restore calibrated value after resume */
dmc_set_read_offset_value(phy0_ctrl, readl(&pmu->pmu_spare1));
dmc_set_read_offset_value(phy1_ctrl, readl(&pmu->pmu_spare2));
} else {
software_find_read_offset(phy0_ctrl, 0,
CTRL_LOCK_COARSE(lock0_info));
software_find_read_offset(phy1_ctrl, 1,
CTRL_LOCK_COARSE(lock1_info));
/* save calibrated value to restore after resume */
writel(dmc_get_read_offset_value(phy0_ctrl), &pmu->pmu_spare1);
writel(dmc_get_read_offset_value(phy1_ctrl), &pmu->pmu_spare2);
}
/* Send PALL command */
dmc_config_prech(mem, &drex0->directcmd);
dmc_config_prech(mem, &drex1->directcmd);
writel(mem->memcontrol, &drex0->memcontrol);
writel(mem->memcontrol, &drex1->memcontrol);
/*
* Set DMC Concontrol: Enable auto-refresh counter, provide
* read data fetch cycles and enable DREX auto set powerdown
* for input buffer of I/O in none read memory state.
*/
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
DMC_CONCONTROL_IO_PD_CON(0x2),
&drex0->concontrol);
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
DMC_CONCONTROL_IO_PD_CON(0x2),
&drex1->concontrol);
/*
* Enable Clock Gating Control for DMC
* this saves around 25 mw dmc power as compared to the power
* consumption without these bits enabled
*/
setbits_le32(&drex0->cgcontrol, DMC_INTERNAL_CG);
setbits_le32(&drex1->cgcontrol, DMC_INTERNAL_CG);
return 0;
}
#endif