|
|
|
/*
|
|
|
|
* cpu/ppc4xx/denali_spd_ddr2.c
|
|
|
|
* This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
|
|
|
|
* DDR2 controller, specifically the 440EPx/GRx.
|
|
|
|
*
|
|
|
|
* (C) Copyright 2007-2008
|
|
|
|
* Larry Johnson, lrj@acm.org.
|
|
|
|
*
|
|
|
|
* Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is...
|
|
|
|
*
|
|
|
|
* (C) Copyright 2007
|
|
|
|
* Stefan Roese, DENX Software Engineering, sr@denx.de.
|
|
|
|
*
|
|
|
|
* COPYRIGHT AMCC CORPORATION 2004
|
|
|
|
*
|
|
|
|
* See file CREDITS for list of people who contributed to this
|
|
|
|
* project.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* define DEBUG for debugging output (obviously ;-)) */
|
|
|
|
#if 0
|
|
|
|
#define DEBUG
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <command.h>
|
|
|
|
#include <ppc4xx.h>
|
|
|
|
#include <i2c.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/mmu.h>
|
|
|
|
#include <asm/cache.h>
|
|
|
|
|
|
|
|
#if defined(CONFIG_SPD_EEPROM) && \
|
|
|
|
(defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------------+
|
|
|
|
* Defines
|
|
|
|
*-----------------------------------------------------------------------------*/
|
|
|
|
#ifndef TRUE
|
|
|
|
#define TRUE 1
|
|
|
|
#endif
|
|
|
|
#ifndef FALSE
|
|
|
|
#define FALSE 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define MAXDIMMS 2
|
|
|
|
#define MAXRANKS 2
|
|
|
|
|
|
|
|
#define ONE_BILLION 1000000000
|
|
|
|
|
|
|
|
#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
|
|
|
|
|
|
|
|
#define DLL_DQS_DELAY 0x19
|
|
|
|
#define DLL_DQS_BYPASS 0x0B
|
|
|
|
#define DQS_OUT_SHIFT 0x7F
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
|
|
|
|
* region. Right now the cache should still be disabled in U-Boot because of the
|
|
|
|
* EMAC driver, that need it's buffer descriptor to be located in non cached
|
|
|
|
* memory.
|
|
|
|
*
|
|
|
|
* If at some time this restriction doesn't apply anymore, just define
|
|
|
|
* CONFIG_4xx_DCACHE in the board config file and this code should setup
|
|
|
|
* everything correctly.
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_4xx_DCACHE)
|
|
|
|
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
|
|
|
|
#else
|
|
|
|
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------------+
|
|
|
|
* Prototypes
|
|
|
|
*-----------------------------------------------------------------------------*/
|
|
|
|
extern int denali_wait_for_dlllock(void);
|
|
|
|
extern void denali_core_search_data_eye(void);
|
|
|
|
extern void dcbz_area(u32 start_address, u32 num_bytes);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
|
|
|
|
*/
|
|
|
|
void __spd_ddr_init_hang(void)
|
|
|
|
{
|
|
|
|
hang();
|
|
|
|
}
|
|
|
|
void spd_ddr_init_hang(void)
|
|
|
|
__attribute__ ((weak, alias("__spd_ddr_init_hang")));
|
|
|
|
|
|
|
|
#if defined(DEBUG)
|
|
|
|
static void print_mcsr(void)
|
|
|
|
{
|
|
|
|
printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void denali_sdram_register_dump(void)
|
|
|
|
{
|
|
|
|
unsigned int sdram_data;
|
|
|
|
|
|
|
|
printf("\n Register Dump:\n");
|
|
|
|
mfsdram(DDR0_00, sdram_data);
|
|
|
|
printf(" DDR0_00 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_01, sdram_data);
|
|
|
|
printf(" DDR0_01 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_02, sdram_data);
|
|
|
|
printf(" DDR0_02 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_03, sdram_data);
|
|
|
|
printf(" DDR0_03 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_04, sdram_data);
|
|
|
|
printf(" DDR0_04 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_05, sdram_data);
|
|
|
|
printf(" DDR0_05 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_06, sdram_data);
|
|
|
|
printf(" DDR0_06 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_07, sdram_data);
|
|
|
|
printf(" DDR0_07 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_08, sdram_data);
|
|
|
|
printf(" DDR0_08 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_09, sdram_data);
|
|
|
|
printf(" DDR0_09 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_10, sdram_data);
|
|
|
|
printf(" DDR0_10 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_11, sdram_data);
|
|
|
|
printf(" DDR0_11 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_12, sdram_data);
|
|
|
|
printf(" DDR0_12 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_14, sdram_data);
|
|
|
|
printf(" DDR0_14 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_17, sdram_data);
|
|
|
|
printf(" DDR0_17 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_18, sdram_data);
|
|
|
|
printf(" DDR0_18 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_19, sdram_data);
|
|
|
|
printf(" DDR0_19 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_20, sdram_data);
|
|
|
|
printf(" DDR0_20 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_21, sdram_data);
|
|
|
|
printf(" DDR0_21 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_22, sdram_data);
|
|
|
|
printf(" DDR0_22 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_23, sdram_data);
|
|
|
|
printf(" DDR0_23 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_24, sdram_data);
|
|
|
|
printf(" DDR0_24 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_25, sdram_data);
|
|
|
|
printf(" DDR0_25 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_26, sdram_data);
|
|
|
|
printf(" DDR0_26 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_27, sdram_data);
|
|
|
|
printf(" DDR0_27 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_28, sdram_data);
|
|
|
|
printf(" DDR0_28 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_31, sdram_data);
|
|
|
|
printf(" DDR0_31 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_32, sdram_data);
|
|
|
|
printf(" DDR0_32 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_33, sdram_data);
|
|
|
|
printf(" DDR0_33 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_34, sdram_data);
|
|
|
|
printf(" DDR0_34 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_35, sdram_data);
|
|
|
|
printf(" DDR0_35 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_36, sdram_data);
|
|
|
|
printf(" DDR0_36 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_37, sdram_data);
|
|
|
|
printf(" DDR0_37 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_38, sdram_data);
|
|
|
|
printf(" DDR0_38 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_39, sdram_data);
|
|
|
|
printf(" DDR0_39 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_40, sdram_data);
|
|
|
|
printf(" DDR0_40 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_41, sdram_data);
|
|
|
|
printf(" DDR0_41 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_42, sdram_data);
|
|
|
|
printf(" DDR0_42 = 0x%08X\n", sdram_data);
|
|
|
|
mfsdram(DDR0_43, sdram_data);
|
|
|
|
printf(" DDR0_43 = 0x%08X", sdram_data);
|
|
|
|
mfsdram(DDR0_44, sdram_data);
|
|
|
|
printf(" DDR0_44 = 0x%08X\n", sdram_data);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void denali_sdram_register_dump(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
inline static void print_mcsr(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* defined(DEBUG) */
|
|
|
|
|
|
|
|
static int is_ecc_enabled(void)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
mfsdram(DDR0_22, val);
|
|
|
|
return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned char spd_read(u8 chip, unsigned int addr)
|
|
|
|
{
|
|
|
|
u8 data[2];
|
|
|
|
|
|
|
|
if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
|
|
|
|
debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
|
|
|
|
chip, addr, data[0]);
|
|
|
|
return data[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long get_tcyc(unsigned char reg)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Byte 9, et al: Cycle time for CAS Latency=X, is split into two
|
|
|
|
* nibbles: the higher order nibble (bits 4-7) designates the cycle time
|
|
|
|
* to a granularity of 1ns; the value presented by the lower order
|
|
|
|
* nibble (bits 0-3) has a granularity of .1ns and is added to the value
|
|
|
|
* designated by the higher nibble. In addition, four lines of the lower
|
|
|
|
* order nibble are assigned to support +.25, +.33, +.66, and +.75.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned char subfield_b = reg & 0x0F;
|
|
|
|
|
|
|
|
switch (subfield_b & 0x0F) {
|
|
|
|
case 0x0:
|
|
|
|
case 0x1:
|
|
|
|
case 0x2:
|
|
|
|
case 0x3:
|
|
|
|
case 0x4:
|
|
|
|
case 0x5:
|
|
|
|
case 0x6:
|
|
|
|
case 0x7:
|
|
|
|
case 0x8:
|
|
|
|
case 0x9:
|
|
|
|
return 1000 * (reg >> 4) + 100 * subfield_b;
|
|
|
|
case 0xA:
|
|
|
|
return 1000 * (reg >> 4) + 250;
|
|
|
|
case 0xB:
|
|
|
|
return 1000 * (reg >> 4) + 333;
|
|
|
|
case 0xC:
|
|
|
|
return 1000 * (reg >> 4) + 667;
|
|
|
|
case 0xD:
|
|
|
|
return 1000 * (reg >> 4) + 750;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Find the installed DIMMs, make sure that the are DDR2, and fill
|
|
|
|
* in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the
|
|
|
|
* DIMM and dimm_num is present.
|
|
|
|
* Note: Because there are only two chip-select lines, it is assumed
|
|
|
|
* that a board with a single socket can support two ranks on that
|
|
|
|
* socket, while a board with two sockets can support only one rank
|
|
|
|
* on each socket.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
static void get_spd_info(unsigned long dimm_ranks[],
|
|
|
|
unsigned long *ranks,
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long dimm_found = FALSE;
|
|
|
|
unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
|
|
|
|
unsigned char num_of_bytes;
|
|
|
|
unsigned char total_size;
|
|
|
|
|
|
|
|
*ranks = 0;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
num_of_bytes = 0;
|
|
|
|
total_size = 0;
|
|
|
|
|
|
|
|
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
|
|
|
|
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
|
|
|
|
if ((num_of_bytes != 0) && (total_size != 0)) {
|
|
|
|
unsigned char const dimm_type =
|
|
|
|
spd_read(iic0_dimm_addr[dimm_num], 2);
|
|
|
|
|
|
|
|
unsigned long ranks_on_dimm =
|
|
|
|
(spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
|
|
|
|
|
|
|
|
if (8 != dimm_type) {
|
|
|
|
switch (dimm_type) {
|
|
|
|
case 1:
|
|
|
|
printf("ERROR: Standard Fast Page Mode "
|
|
|
|
"DRAM DIMM");
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
printf("ERROR: EDO DIMM");
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
printf("ERROR: Pipelined Nibble DIMM");
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
printf("ERROR: SDRAM DIMM");
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
printf("ERROR: Multiplexed ROM DIMM");
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
printf("ERROR: SGRAM DIMM");
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
printf("ERROR: DDR1 DIMM");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("ERROR: Unknown DIMM (type %d)",
|
|
|
|
(unsigned int)dimm_type);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
printf(" detected in slot %lu.\n", dimm_num);
|
|
|
|
printf("Only DDR2 SDRAM DIMMs are supported."
|
|
|
|
"\n");
|
|
|
|
printf("Replace the module with a DDR2 DIMM."
|
|
|
|
"\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
dimm_found = TRUE;
|
|
|
|
debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
|
|
|
|
"\n", dimm_num, ranks_on_dimm);
|
|
|
|
if (ranks_on_dimm > max_ranks_per_dimm) {
|
|
|
|
printf("WARNING: DRAM DIMM in slot %lu has %lu "
|
|
|
|
"ranks.\n", dimm_num, ranks_on_dimm);
|
|
|
|
if (1 == max_ranks_per_dimm) {
|
|
|
|
printf("Only one rank will be used.\n");
|
|
|
|
} else {
|
|
|
|
printf
|
|
|
|
("Only two ranks will be used.\n");
|
|
|
|
}
|
|
|
|
ranks_on_dimm = max_ranks_per_dimm;
|
|
|
|
}
|
|
|
|
dimm_ranks[dimm_num] = ranks_on_dimm;
|
|
|
|
*ranks += ranks_on_dimm;
|
|
|
|
} else {
|
|
|
|
dimm_ranks[dimm_num] = 0;
|
|
|
|
debug("DIMM slot %lu: Not populated\n", dimm_num);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (dimm_found == FALSE) {
|
|
|
|
printf("ERROR: No memory installed.\n");
|
|
|
|
printf("Install at least one DDR2 DIMM.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
debug("Total number of ranks = %d\n", *ranks);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* For the memory DIMMs installed, this routine verifies that
|
|
|
|
* frequency previously calculated is supported.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
static void check_frequency(unsigned long *dimm_ranks,
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long cycle_time;
|
|
|
|
unsigned long calc_cycle_time;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* calc_cycle_time is calculated from DDR frequency set by board/chip
|
|
|
|
* and is expressed in picoseconds to match the way DIMM cycle time is
|
|
|
|
* calculated below.
|
|
|
|
*/
|
|
|
|
calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
|
|
|
|
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
cycle_time =
|
|
|
|
get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
|
|
|
|
debug("cycle_time=%d ps\n", cycle_time);
|
|
|
|
|
|
|
|
if (cycle_time > (calc_cycle_time + 10)) {
|
|
|
|
/*
|
|
|
|
* the provided sdram cycle_time is too small
|
|
|
|
* for the available DIMM cycle_time. The
|
|
|
|
* additionnal 10ps is here to accept a small
|
|
|
|
* incertainty.
|
|
|
|
*/
|
|
|
|
printf
|
|
|
|
("ERROR: DRAM DIMM detected with cycle_time %d ps in "
|
|
|
|
"slot %d \n while calculated cycle time is %d ps.\n",
|
|
|
|
(unsigned int)cycle_time,
|
|
|
|
(unsigned int)dimm_num,
|
|
|
|
(unsigned int)calc_cycle_time);
|
|
|
|
printf
|
|
|
|
("Replace the DIMM, or change DDR frequency via "
|
|
|
|
"strapping bits.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* This routine gets size information for the installed memory
|
|
|
|
* DIMMs.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
static void get_dimm_size(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long *const rows,
|
|
|
|
unsigned long *const banks,
|
|
|
|
unsigned long *const cols, unsigned long *const width)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
|
|
|
|
*rows = 0;
|
|
|
|
*banks = 0;
|
|
|
|
*cols = 0;
|
|
|
|
*width = 0;
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long t;
|
|
|
|
|
|
|
|
/* Rows */
|
|
|
|
t = spd_read(iic0_dimm_addr[dimm_num], 3);
|
|
|
|
if (0 == *rows) {
|
|
|
|
*rows = t;
|
|
|
|
} else if (t != *rows) {
|
|
|
|
printf("ERROR: DRAM DIMM modules do not all "
|
|
|
|
"have the same number of rows.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
/* Banks */
|
|
|
|
t = spd_read(iic0_dimm_addr[dimm_num], 17);
|
|
|
|
if (0 == *banks) {
|
|
|
|
*banks = t;
|
|
|
|
} else if (t != *banks) {
|
|
|
|
printf("ERROR: DRAM DIMM modules do not all "
|
|
|
|
"have the same number of banks.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
/* Columns */
|
|
|
|
t = spd_read(iic0_dimm_addr[dimm_num], 4);
|
|
|
|
if (0 == *cols) {
|
|
|
|
*cols = t;
|
|
|
|
} else if (t != *cols) {
|
|
|
|
printf("ERROR: DRAM DIMM modules do not all "
|
|
|
|
"have the same number of columns.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
/* Data width */
|
|
|
|
t = spd_read(iic0_dimm_addr[dimm_num], 6);
|
|
|
|
if (0 == *width) {
|
|
|
|
*width = t;
|
|
|
|
} else if (t != *width) {
|
|
|
|
printf("ERROR: DRAM DIMM modules do not all "
|
|
|
|
"have the same data width.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("Number of rows = %d\n", *rows);
|
|
|
|
debug("Number of columns = %d\n", *cols);
|
|
|
|
debug("Number of banks = %d\n", *banks);
|
|
|
|
debug("Data width = %d\n", *width);
|
|
|
|
if (*rows > 14) {
|
|
|
|
printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
|
|
|
|
*rows);
|
|
|
|
printf("Only modules with 14 or fewer rows are supported.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
if (4 != *banks && 8 != *banks) {
|
|
|
|
printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
|
|
|
|
printf("Only modules with 4 or 8 banks are supported.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
if (*cols > 12) {
|
|
|
|
printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
|
|
|
|
*cols);
|
|
|
|
printf("Only modules with 12 or fewer columns are "
|
|
|
|
"supported.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
|
|
|
|
printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
|
|
|
|
*width);
|
|
|
|
printf("Only modules with widths of 32, 40, 64, and 72 bits "
|
|
|
|
"are supported.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Only 1.8V modules are supported. This routine verifies this.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
static void check_voltage_type(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long voltage_type;
|
|
|
|
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
|
|
|
|
if (0x05 != voltage_type) { /* 1.8V for DDR2 */
|
|
|
|
printf("ERROR: Slot %lu provides 1.8V for DDR2 "
|
|
|
|
"DIMMs.\n", dimm_num);
|
|
|
|
switch (voltage_type) {
|
|
|
|
case 0x00:
|
|
|
|
printf("This DIMM is 5.0 Volt/TTL.\n");
|
|
|
|
break;
|
|
|
|
case 0x01:
|
|
|
|
printf("This DIMM is LVTTL.\n");
|
|
|
|
break;
|
|
|
|
case 0x02:
|
|
|
|
printf("This DIMM is 1.5 Volt.\n");
|
|
|
|
break;
|
|
|
|
case 0x03:
|
|
|
|
printf("This DIMM is 3.3 Volt/TTL.\n");
|
|
|
|
break;
|
|
|
|
case 0x04:
|
|
|
|
printf("This DIMM is 2.5 Volt.\n");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("This DIMM is an unknown "
|
|
|
|
"voltage.\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_03(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq,
|
|
|
|
unsigned long rows, unsigned long *cas_latency)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long cas_index;
|
|
|
|
unsigned long cycle_2_0_clk;
|
|
|
|
unsigned long cycle_3_0_clk;
|
|
|
|
unsigned long cycle_4_0_clk;
|
|
|
|
unsigned long cycle_5_0_clk;
|
|
|
|
unsigned long max_2_0_tcyc_ps = 100;
|
|
|
|
unsigned long max_3_0_tcyc_ps = 100;
|
|
|
|
unsigned long max_4_0_tcyc_ps = 100;
|
|
|
|
unsigned long max_5_0_tcyc_ps = 100;
|
|
|
|
unsigned char cas_available = 0x3C; /* value for DDR2 */
|
|
|
|
u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
|
|
|
|
unsigned int const tcyc_addr[3] = { 9, 23, 25 };
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Get the board configuration info.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
debug("sdram_freq = %d\n", sdram_freq);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned char const cas_bit =
|
|
|
|
spd_read(iic0_dimm_addr[dimm_num], 18);
|
|
|
|
unsigned char cas_mask;
|
|
|
|
|
|
|
|
cas_available &= cas_bit;
|
|
|
|
for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
|
|
|
|
if (cas_bit & cas_mask)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
|
|
|
|
cas_bit, cas_mask);
|
|
|
|
|
|
|
|
for (cas_index = 0; cas_index < 3;
|
|
|
|
cas_mask >>= 1, cas_index++) {
|
|
|
|
unsigned long cycle_time_ps;
|
|
|
|
|
|
|
|
if (!(cas_available & cas_mask)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cycle_time_ps =
|
|
|
|
get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
|
|
|
|
tcyc_addr[cas_index]));
|
|
|
|
|
|
|
|
debug("cas_index = %d: cycle_time_ps = %d\n",
|
|
|
|
cas_index, cycle_time_ps);
|
|
|
|
/*
|
|
|
|
* DDR2 devices use the following bitmask for CAS latency:
|
|
|
|
* Bit 7 6 5 4 3 2 1 0
|
|
|
|
* TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
|
|
|
|
*/
|
|
|
|
switch (cas_mask) {
|
|
|
|
case 0x20:
|
|
|
|
max_5_0_tcyc_ps =
|
|
|
|
max(max_5_0_tcyc_ps, cycle_time_ps);
|
|
|
|
break;
|
|
|
|
case 0x10:
|
|
|
|
max_4_0_tcyc_ps =
|
|
|
|
max(max_4_0_tcyc_ps, cycle_time_ps);
|
|
|
|
break;
|
|
|
|
case 0x08:
|
|
|
|
max_3_0_tcyc_ps =
|
|
|
|
max(max_3_0_tcyc_ps, cycle_time_ps);
|
|
|
|
break;
|
|
|
|
case 0x04:
|
|
|
|
max_2_0_tcyc_ps =
|
|
|
|
max(max_2_0_tcyc_ps, cycle_time_ps);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("cas_available (bit map) = 0x%02X\n", cas_available);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Set the SDRAM mode, SDRAM_MMODE
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* add 10 here because of rounding problems */
|
|
|
|
cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
|
|
|
|
cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
|
|
|
|
cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
|
|
|
|
cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
|
|
|
|
debug("cycle_2_0_clk = %d\n", cycle_2_0_clk);
|
|
|
|
debug("cycle_3_0_clk = %d\n", cycle_3_0_clk);
|
|
|
|
debug("cycle_4_0_clk = %d\n", cycle_4_0_clk);
|
|
|
|
debug("cycle_5_0_clk = %d\n", cycle_5_0_clk);
|
|
|
|
|
|
|
|
if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
|
|
|
|
*cas_latency = 2;
|
|
|
|
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
|
|
|
|
DDR0_03_CASLAT_LIN_ENCODE(0x4);
|
|
|
|
} else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
|
|
|
|
*cas_latency = 3;
|
|
|
|
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
|
|
|
|
DDR0_03_CASLAT_LIN_ENCODE(0x6);
|
|
|
|
} else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
|
|
|
|
*cas_latency = 4;
|
|
|
|
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
|
|
|
|
DDR0_03_CASLAT_LIN_ENCODE(0x8);
|
|
|
|
} else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
|
|
|
|
*cas_latency = 5;
|
|
|
|
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
|
|
|
|
DDR0_03_CASLAT_LIN_ENCODE(0xA);
|
|
|
|
} else {
|
|
|
|
printf("ERROR: Cannot find a supported CAS latency with the "
|
|
|
|
"installed DIMMs.\n");
|
|
|
|
printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
|
|
|
|
"and 5.0 are supported.\n");
|
|
|
|
printf("Make sure the PLB speed is within the supported range "
|
|
|
|
"of the DIMMs.\n");
|
|
|
|
printf("sdram_freq=%ld cycle2=%ld cycle3=%ld cycle4=%ld "
|
|
|
|
"cycle5=%ld\n\n", sdram_freq, cycle_2_0_clk,
|
|
|
|
cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
|
|
|
|
spd_ddr_init_hang();
|
|
|
|
}
|
|
|
|
debug("CAS latency = %d\n", *cas_latency);
|
|
|
|
mtsdram(DDR0_03, ddr0_03);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_04(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long t_rc_ps = 0;
|
|
|
|
unsigned long t_rrd_ps = 0;
|
|
|
|
unsigned long t_rtp_ps = 0;
|
|
|
|
unsigned long t_rc_clk;
|
|
|
|
unsigned long t_rrd_clk;
|
|
|
|
unsigned long t_rtp_clk;
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long ps;
|
|
|
|
|
|
|
|
/* tRC */
|
|
|
|
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
|
|
|
|
switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
|
|
|
|
case 0x1:
|
|
|
|
ps += 250;
|
|
|
|
break;
|
|
|
|
case 0x2:
|
|
|
|
ps += 333;
|
|
|
|
break;
|
|
|
|
case 0x3:
|
|
|
|
ps += 500;
|
|
|
|
break;
|
|
|
|
case 0x4:
|
|
|
|
ps += 667;
|
|
|
|
break;
|
|
|
|
case 0x5:
|
|
|
|
ps += 750;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
t_rc_ps = max(t_rc_ps, ps);
|
|
|
|
/* tRRD */
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
|
|
|
|
t_rrd_ps = max(t_rrd_ps, ps);
|
|
|
|
/* tRTP */
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
|
|
|
|
t_rtp_ps = max(t_rtp_ps, ps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("t_rc_ps = %d\n", t_rc_ps);
|
|
|
|
t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
debug("t_rrd_ps = %d\n", t_rrd_ps);
|
|
|
|
t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
debug("t_rtp_ps = %d\n", t_rtp_ps);
|
|
|
|
t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
|
|
|
|
DDR0_04_TRRD_ENCODE(t_rrd_clk) |
|
|
|
|
DDR0_04_TRTP_ENCODE(t_rtp_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_05(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long t_rp_ps = 0;
|
|
|
|
unsigned long t_ras_ps = 0;
|
|
|
|
unsigned long t_rp_clk;
|
|
|
|
unsigned long t_ras_clk;
|
|
|
|
u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long ps;
|
|
|
|
|
|
|
|
/* tRP */
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
|
|
|
|
t_rp_ps = max(t_rp_ps, ps);
|
|
|
|
/* tRAS */
|
|
|
|
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
|
|
|
|
t_ras_ps = max(t_ras_ps, ps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("t_rp_ps = %d\n", t_rp_ps);
|
|
|
|
t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
debug("t_ras_ps = %d\n", t_ras_ps);
|
|
|
|
t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
|
|
|
|
DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_06(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned char spd_40;
|
|
|
|
unsigned long t_wtr_ps = 0;
|
|
|
|
unsigned long t_rfc_ps = 0;
|
|
|
|
unsigned long t_wtr_clk;
|
|
|
|
unsigned long t_rfc_clk;
|
|
|
|
u32 ddr0_06 =
|
|
|
|
DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long ps;
|
|
|
|
|
|
|
|
/* tWTR */
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
|
|
|
|
t_wtr_ps = max(t_wtr_ps, ps);
|
|
|
|
/* tRFC */
|
|
|
|
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
|
|
|
|
spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
|
|
|
|
ps += 256000 * (spd_40 & 0x01);
|
|
|
|
switch ((spd_40 & 0x0E) >> 1) {
|
|
|
|
case 0x1:
|
|
|
|
ps += 250;
|
|
|
|
break;
|
|
|
|
case 0x2:
|
|
|
|
ps += 333;
|
|
|
|
break;
|
|
|
|
case 0x3:
|
|
|
|
ps += 500;
|
|
|
|
break;
|
|
|
|
case 0x4:
|
|
|
|
ps += 667;
|
|
|
|
break;
|
|
|
|
case 0x5:
|
|
|
|
ps += 750;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
t_rfc_ps = max(t_rfc_ps, ps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("t_wtr_ps = %d\n", t_wtr_ps);
|
|
|
|
t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
debug("t_rfc_ps = %d\n", t_rfc_ps);
|
|
|
|
t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
|
|
|
|
DDR0_06_TRFC_ENCODE(t_rfc_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
|
|
|
|
{
|
|
|
|
unsigned long csmap;
|
|
|
|
|
|
|
|
if (2 == ranks) {
|
|
|
|
/* Both chip selects in use */
|
|
|
|
csmap = 0x03;
|
|
|
|
} else {
|
|
|
|
/* One chip select in use */
|
|
|
|
csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
|
|
|
|
}
|
|
|
|
mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
|
|
|
|
DDR0_10_CS_MAP_ENCODE(csmap) |
|
|
|
|
DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_11(unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long const t_xsnr_ps = 200000; /* 200 ns */
|
|
|
|
unsigned long t_xsnr_clk;
|
|
|
|
|
|
|
|
debug("t_xsnr_ps = %d\n", t_xsnr_ps);
|
|
|
|
t_xsnr_clk =
|
|
|
|
(MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
|
|
|
|
DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_22(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks, unsigned long width)
|
|
|
|
{
|
|
|
|
#if defined(CONFIG_DDR_ECC)
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long ecc_available = width >= 64;
|
|
|
|
u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
|
|
|
|
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
|
|
|
|
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
|
|
|
|
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
/* Check for ECC */
|
|
|
|
if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
|
|
|
|
0x02)) {
|
|
|
|
ecc_available = FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ecc_available) {
|
|
|
|
debug("ECC found on all DIMMs present\n");
|
|
|
|
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
|
|
|
|
} else {
|
|
|
|
debug("ECC not found on some or all DIMMs present\n");
|
|
|
|
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
|
|
|
|
DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
|
|
|
|
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
|
|
|
|
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
|
|
|
|
#endif /* defined(CONFIG_DDR_ECC) */
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_24(unsigned long ranks)
|
|
|
|
{
|
|
|
|
u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
|
|
|
|
DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
|
|
|
|
|
|
|
|
if (2 == ranks) {
|
|
|
|
/* Both chip selects in use */
|
|
|
|
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
|
|
|
|
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
|
|
|
|
} else {
|
|
|
|
/* One chip select in use */
|
|
|
|
/* One of the two fields added to ddr0_24 is a "don't care" */
|
|
|
|
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
|
|
|
|
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
|
|
|
|
}
|
|
|
|
mtsdram(DDR0_24, ddr0_24);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_26(unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
|
|
|
|
/* TODO: check definition of tRAS_MAX */
|
|
|
|
unsigned long const t_ras_max_ps = 9 * t_ref_ps;
|
|
|
|
unsigned long t_ras_max_clk;
|
|
|
|
unsigned long t_ref_clk;
|
|
|
|
|
|
|
|
/* Round down t_ras_max_clk and t_ref_clk */
|
|
|
|
debug("t_ras_max_ps = %d\n", t_ras_max_ps);
|
|
|
|
t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
|
|
|
|
debug("t_ref_ps = %d\n", t_ref_ps);
|
|
|
|
t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
|
|
|
|
mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
|
|
|
|
DDR0_26_TREF_ENCODE(t_ref_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_27(unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long const t_init_ps = 200000000; /* 200 us. init */
|
|
|
|
unsigned long t_init_clk;
|
|
|
|
|
|
|
|
debug("t_init_ps = %d\n", t_init_ps);
|
|
|
|
t_init_clk =
|
|
|
|
(MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
|
|
|
|
DDR0_27_TINIT_ENCODE(t_init_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_43(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq,
|
|
|
|
unsigned long cols, unsigned long banks)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long t_wr_ps = 0;
|
|
|
|
unsigned long t_wr_clk;
|
|
|
|
u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
|
|
|
|
DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
|
|
|
|
DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long ps;
|
|
|
|
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
|
|
|
|
t_wr_ps = max(t_wr_ps, ps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("t_wr_ps = %d\n", t_wr_ps);
|
|
|
|
t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void program_ddr0_44(unsigned long dimm_ranks[],
|
|
|
|
unsigned char const iic0_dimm_addr[],
|
|
|
|
unsigned long num_dimm_banks,
|
|
|
|
unsigned long sdram_freq)
|
|
|
|
{
|
|
|
|
unsigned long dimm_num;
|
|
|
|
unsigned long t_rcd_ps = 0;
|
|
|
|
unsigned long t_rcd_clk;
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Handle the timing. We need to find the worst case timing of all
|
|
|
|
* the dimm modules installed.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
/* loop through all the DIMM slots on the board */
|
|
|
|
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
|
|
|
|
/* If a dimm is installed in a particular slot ... */
|
|
|
|
if (dimm_ranks[dimm_num]) {
|
|
|
|
unsigned long ps;
|
|
|
|
|
|
|
|
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
|
|
|
|
t_rcd_ps = max(t_rcd_ps, ps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
debug("t_rcd_ps = %d\n", t_rcd_ps);
|
|
|
|
t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
|
|
|
|
mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------------+
|
|
|
|
* initdram. Initializes the 440EPx/GPx DDR SDRAM controller.
|
|
|
|
* Note: This routine runs from flash with a stack set up in the chip's
|
|
|
|
* sram space. It is important that the routine does not require .sbss, .bss or
|
|
|
|
* .data sections. It also cannot call routines that require these sections.
|
|
|
|
*-----------------------------------------------------------------------------*/
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
|
|
* Function: initdram
|
|
|
|
* Description: Configures SDRAM memory banks for DDR operation.
|
|
|
|
* Auto Memory Configuration option reads the DDR SDRAM EEPROMs
|
|
|
|
* via the IIC bus and then configures the DDR SDRAM memory
|
|
|
|
* banks appropriately. If Auto Memory Configuration is
|
|
|
|
* not used, it is assumed that no DIMM is plugged
|
|
|
|
*-----------------------------------------------------------------------------*/
|
|
|
|
phys_size_t initdram(int board_type)
|
|
|
|
{
|
|
|
|
unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
|
|
|
|
unsigned long dimm_ranks[MAXDIMMS];
|
|
|
|
unsigned long ranks;
|
|
|
|
unsigned long rows;
|
|
|
|
unsigned long banks;
|
|
|
|
unsigned long cols;
|
|
|
|
unsigned long width;
|
|
|
|
unsigned long const sdram_freq = get_bus_freq(0);
|
|
|
|
unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */
|
|
|
|
unsigned long cas_latency = 0; /* to quiet initialization warning */
|
|
|
|
unsigned long dram_size;
|
|
|
|
|
|
|
|
debug("\nEntering initdram()\n");
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Stop the DDR-SDRAM controller.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure I2C controller is initialized
|
|
|
|
* before continuing.
|
|
|
|
*/
|
|
|
|
/* switch to correct I2C bus */
|
|
|
|
I2C_SET_BUS(CFG_SPD_BUS_NUM);
|
|
|
|
i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Clear out the serial presence detect buffers.
|
|
|
|
* Perform IIC reads from the dimm. Fill in the spds.
|
|
|
|
* Check to see if the dimm slots are populated
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Check the frequency supported for the dimms plugged.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Check and get size information.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
|
|
|
|
&cols, &width);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Check the voltage type for the dimms plugged.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
|
|
|
|
|
|
|
|
/*------------------------------------------------------------------
|
|
|
|
* Program registers for SDRAM controller.
|
|
|
|
*-----------------------------------------------------------------*/
|
|
|
|
mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
|
|
|
|
DDR0_00_DLL_START_POINT_DECODE(0x0A));
|
|
|
|
|
|
|
|
mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
|
|
|
|
DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
|
|
|
|
DDR0_01_INT_MASK_ENCODE(0xFF));
|
|
|
|
|
|
|
|
program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
|
|
|
|
rows, &cas_latency);
|
|
|
|
|
|
|
|
program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
|
|
|
|
|
|
|
|
program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
|
|
|
|
|
|
|
|
program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* TODO: tFAW not found in SPD. Value of 13 taken from Sequoia
|
|
|
|
* board SDRAM, but may be overly conservative.
|
|
|
|
*/
|
|
|
|
mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
|
|
|
|
DDR0_07_TFAW_ENCODE(13) |
|
|
|
|
DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
|
|
|
|
DDR0_07_AREFRESH_ENCODE(0));
|
|
|
|
|
|
|
|
mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
|
|
|
|
DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
|
|
|
|
DDR0_08_DDRII_ENCODE(1));
|
|
|
|
|
|
|
|
mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
|
|
|
|
DDR0_09_RTT_0_ENCODE(0x1) |
|
|
|
|
DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
|
|
|
|
DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
|
|
|
|
|
|
|
|
program_ddr0_10(dimm_ranks, ranks);
|
|
|
|
|
|
|
|
program_ddr0_11(sdram_freq);
|
|
|
|
|
|
|
|
mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
|
|
|
|
|
|
|
|
mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
|
|
|
|
DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
|
|
|
|
DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
|
|
|
|
|
|
|
|
mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
|
|
|
|
|
|
|
|
mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
|
|
|
|
|
|
|
|
mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
|
|
|
|
DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
|
|
|
|
|
|
|
|
mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
|
|
|
|
|
|
|
|
mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
|
|
|
|
DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
|
|
|
|
|
|
|
|
program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
|
|
|
|
|
|
|
|
mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
|
|
|
|
DDR0_23_FWC_ENCODE(0));
|
|
|
|
|
|
|
|
program_ddr0_24(ranks);
|
|
|
|
|
|
|
|
program_ddr0_26(sdram_freq);
|
|
|
|
|
|
|
|
program_ddr0_27(sdram_freq);
|
|
|
|
|
|
|
|
mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
|
|
|
|
DDR0_28_EMRS2_DATA_ENCODE(0x0000));
|
|
|
|
|
|
|
|
mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
|
|
|
|
|
|
|
|
mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) |
|
|
|
|
DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
|
|
|
|
|
|
|
|
program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
|
|
|
|
cols, banks);
|
|
|
|
|
|
|
|
program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
|
|
|
|
|
|
|
|
denali_sdram_register_dump();
|
|
|
|
|
|
|
|
dram_size = (width >= 64) ? 8 : 4;
|
|
|
|
dram_size *= 1 << cols;
|
|
|
|
dram_size *= banks;
|
|
|
|
dram_size *= 1 << rows;
|
|
|
|
dram_size *= ranks;
|
|
|
|
debug("dram_size = %lu\n", dram_size);
|
|
|
|
|
|
|
|
/* Start the SDRAM controler */
|
|
|
|
mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
|
|
|
|
denali_wait_for_dlllock();
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_DATA_EYE)
|
|
|
|
/*
|
|
|
|
* Map the first 1 MiB of memory in the TLB, and perform the data eye
|
|
|
|
* search.
|
|
|
|
*/
|
|
|
|
program_tlb(0, CFG_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE);
|
|
|
|
denali_core_search_data_eye();
|
|
|
|
denali_sdram_register_dump();
|
|
|
|
remove_tlb(CFG_SDRAM_BASE, TLB_1MB_SIZE);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
|
|
|
|
program_tlb(0, CFG_SDRAM_BASE, dram_size, 0);
|
|
|
|
sync();
|
|
|
|
/* Zero the memory */
|
|
|
|
debug("Zeroing SDRAM...");
|
|
|
|
#if defined(CFG_MEM_TOP_HIDE)
|
|
|
|
dcbz_area(CFG_SDRAM_BASE, dram_size - CFG_MEM_TOP_HIDE);
|
|
|
|
#else
|
|
|
|
#error Please define CFG_MEM_TOP_HIDE (see README) in your board config file
|
|
|
|
#endif
|
|
|
|
/* Write modified dcache lines back to memory */
|
|
|
|
clean_dcache_range(CFG_SDRAM_BASE, CFG_SDRAM_BASE + dram_size - CFG_MEM_TOP_HIDE);
|
|
|
|
debug("Completed\n");
|
|
|
|
sync();
|
|
|
|
remove_tlb(CFG_SDRAM_BASE, dram_size);
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC)
|
|
|
|
/*
|
|
|
|
* If ECC is enabled, clear and enable interrupts
|
|
|
|
*/
|
|
|
|
if (is_ecc_enabled()) {
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
sync();
|
|
|
|
/* Clear error status */
|
|
|
|
mfsdram(DDR0_00, val);
|
|
|
|
mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
|
|
|
|
/* Set 'int_mask' parameter to functionnal value */
|
|
|
|
mfsdram(DDR0_01, val);
|
|
|
|
mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
|
|
|
|
DDR0_01_INT_MASK_ALL_OFF);
|
|
|
|
#if defined(CONFIG_DDR_DATA_EYE)
|
|
|
|
/*
|
|
|
|
* Running denali_core_search_data_eye() when ECC is enabled
|
|
|
|
* causes non-ECC machine checks. This clears them.
|
|
|
|
*/
|
|
|
|
print_mcsr();
|
|
|
|
mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
|
|
|
|
print_mcsr();
|
|
|
|
#endif
|
|
|
|
sync();
|
|
|
|
}
|
|
|
|
#endif /* defined(CONFIG_DDR_ECC) */
|
|
|
|
#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
|
|
|
|
|
|
|
|
program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
|
|
|
|
return dram_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
void board_add_ram_info(int use_default)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
printf(" (ECC");
|
|
|
|
if (!is_ecc_enabled()) {
|
|
|
|
printf(" not");
|
|
|
|
}
|
|
|
|
printf(" enabled, %ld MHz", (2 * get_bus_freq(0)) / 1000000);
|
|
|
|
|
|
|
|
mfsdram(DDR0_03, val);
|
|
|
|
printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SPD_EEPROM */
|