upstream u-boot with additional patches for our devices/boards:
https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ;
Gbit ethernet patch for some LIME2 revisions ;
with SPI flash support
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
913 lines
22 KiB
913 lines
22 KiB
22 years ago
|
/*
|
||
|
* This file is subject to the terms and conditions of the GNU General Public
|
||
|
* License. See the file "COPYING" in the main directory of this archive
|
||
|
* for more details.
|
||
|
*
|
||
|
* Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
|
||
|
* Copyright (c) 2000 Silicon Graphics, Inc.
|
||
|
*/
|
||
|
#ifndef _ASM_BITOPS_H
|
||
|
#define _ASM_BITOPS_H
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <asm/byteorder.h> /* sigh ... */
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
#include <asm/sgidefs.h>
|
||
|
#include <asm/system.h>
|
||
|
#include <linux/config.h>
|
||
|
|
||
|
/*
|
||
|
* clear_bit() doesn't provide any barrier for the compiler.
|
||
|
*/
|
||
|
#define smp_mb__before_clear_bit() barrier()
|
||
|
#define smp_mb__after_clear_bit() barrier()
|
||
|
|
||
|
/*
|
||
|
* Only disable interrupt for kernel mode stuff to keep usermode stuff
|
||
|
* that dares to use kernel include files alive.
|
||
|
*/
|
||
|
#define __bi_flags unsigned long flags
|
||
|
#define __bi_cli() __cli()
|
||
|
#define __bi_save_flags(x) __save_flags(x)
|
||
|
#define __bi_save_and_cli(x) __save_and_cli(x)
|
||
|
#define __bi_restore_flags(x) __restore_flags(x)
|
||
|
#else
|
||
|
#define __bi_flags
|
||
|
#define __bi_cli()
|
||
|
#define __bi_save_flags(x)
|
||
|
#define __bi_save_and_cli(x)
|
||
|
#define __bi_restore_flags(x)
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#ifdef CONFIG_CPU_HAS_LLSC
|
||
|
|
||
|
#include <asm/mipsregs.h>
|
||
|
|
||
|
/*
|
||
|
* These functions for MIPS ISA > 1 are interrupt and SMP proof and
|
||
|
* interrupt friendly
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* set_bit - Atomically set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* This function is atomic and may not be reordered. See __set_bit()
|
||
|
* if you do not require the atomic guarantees.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
extern __inline__ void
|
||
|
set_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
"1:\tll\t%0, %1\t\t# set_bit\n\t"
|
||
|
"or\t%0, %2\n\t"
|
||
|
"sc\t%0, %1\n\t"
|
||
|
"beqz\t%0, 1b"
|
||
|
: "=&r" (temp), "=m" (*m)
|
||
|
: "ir" (1UL << (nr & 0x1f)), "m" (*m));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __set_bit - Set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
extern __inline__ void __set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
|
||
|
*m |= 1UL << (nr & 31);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* clear_bit - Clears a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* clear_bit() is atomic and may not be reordered. However, it does
|
||
|
* not contain a memory barrier, so if it is used for locking purposes,
|
||
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
||
|
* in order to ensure changes are visible on other processors.
|
||
|
*/
|
||
|
extern __inline__ void
|
||
|
clear_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
"1:\tll\t%0, %1\t\t# clear_bit\n\t"
|
||
|
"and\t%0, %2\n\t"
|
||
|
"sc\t%0, %1\n\t"
|
||
|
"beqz\t%0, 1b\n\t"
|
||
|
: "=&r" (temp), "=m" (*m)
|
||
|
: "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* change_bit - Toggle a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* change_bit() is atomic and may not be reordered.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
extern __inline__ void
|
||
|
change_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
"1:\tll\t%0, %1\t\t# change_bit\n\t"
|
||
|
"xor\t%0, %2\n\t"
|
||
|
"sc\t%0, %1\n\t"
|
||
|
"beqz\t%0, 1b"
|
||
|
: "=&r" (temp), "=m" (*m)
|
||
|
: "ir" (1UL << (nr & 0x1f)), "m" (*m));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __change_bit - Toggle a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
extern __inline__ void __change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
|
||
|
*m ^= 1UL << (nr & 31);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int
|
||
|
test_and_set_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp, res;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
".set\tnoreorder\t\t# test_and_set_bit\n"
|
||
|
"1:\tll\t%0, %1\n\t"
|
||
|
"or\t%2, %0, %3\n\t"
|
||
|
"sc\t%2, %1\n\t"
|
||
|
"beqz\t%2, 1b\n\t"
|
||
|
" and\t%2, %0, %3\n\t"
|
||
|
".set\treorder"
|
||
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
||
|
: "r" (1UL << (nr & 0x1f)), "m" (*m)
|
||
|
: "memory");
|
||
|
|
||
|
return res != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a |= mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int
|
||
|
test_and_clear_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp, res;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
".set\tnoreorder\t\t# test_and_clear_bit\n"
|
||
|
"1:\tll\t%0, %1\n\t"
|
||
|
"or\t%2, %0, %3\n\t"
|
||
|
"xor\t%2, %3\n\t"
|
||
|
"sc\t%2, %1\n\t"
|
||
|
"beqz\t%2, 1b\n\t"
|
||
|
" and\t%2, %0, %3\n\t"
|
||
|
".set\treorder"
|
||
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
||
|
: "r" (1UL << (nr & 0x1f)), "m" (*m)
|
||
|
: "memory");
|
||
|
|
||
|
return res != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a &= ~mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_change_bit - Change a bit and return its new value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int
|
||
|
test_and_change_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
unsigned long temp, res;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
".set\tnoreorder\t\t# test_and_change_bit\n"
|
||
|
"1:\tll\t%0, %1\n\t"
|
||
|
"xor\t%2, %0, %3\n\t"
|
||
|
"sc\t%2, %1\n\t"
|
||
|
"beqz\t%2, 1b\n\t"
|
||
|
" and\t%2, %0, %3\n\t"
|
||
|
".set\treorder"
|
||
|
: "=&r" (temp), "=m" (*m), "=&r" (res)
|
||
|
: "r" (1UL << (nr & 0x1f)), "m" (*m)
|
||
|
: "memory");
|
||
|
|
||
|
return res != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_change_bit - Change a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a ^= mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
#else /* MIPS I */
|
||
|
|
||
|
/*
|
||
|
* set_bit - Atomically set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* This function is atomic and may not be reordered. See __set_bit()
|
||
|
* if you do not require the atomic guarantees.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
extern __inline__ void set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
*a |= mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __set_bit - Set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
extern __inline__ void __set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
*a |= mask;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* clear_bit - Clears a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* clear_bit() is atomic and may not be reordered. However, it does
|
||
|
* not contain a memory barrier, so if it is used for locking purposes,
|
||
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
||
|
* in order to ensure changes are visible on other processors.
|
||
|
*/
|
||
|
extern __inline__ void clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
*a &= ~mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* change_bit - Toggle a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* change_bit() is atomic and may not be reordered.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
extern __inline__ void change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
*a ^= mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __change_bit - Toggle a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
extern __inline__ void __change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
|
||
|
|
||
|
*m ^= 1UL << (nr & 31);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a |= mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a |= mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a &= ~mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a &= ~mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* test_and_change_bit - Change a bit and return its new value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
__bi_flags;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
__bi_save_and_cli(flags);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a ^= mask;
|
||
|
__bi_restore_flags(flags);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __test_and_change_bit - Change a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
int mask, retval;
|
||
|
volatile int *a = addr;
|
||
|
|
||
|
a += nr >> 5;
|
||
|
mask = 1 << (nr & 0x1f);
|
||
|
retval = (mask & *a) != 0;
|
||
|
*a ^= mask;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
#undef __bi_flags
|
||
|
#undef __bi_cli
|
||
|
#undef __bi_save_flags
|
||
|
#undef __bi_restore_flags
|
||
|
|
||
|
#endif /* MIPS I */
|
||
|
|
||
|
/*
|
||
|
* test_bit - Determine whether a bit is set
|
||
|
* @nr: bit number to test
|
||
|
* @addr: Address to start counting from
|
||
|
*/
|
||
|
extern __inline__ int test_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
|
||
|
}
|
||
|
|
||
|
#ifndef __MIPSEB__
|
||
|
|
||
|
/* Little endian versions. */
|
||
|
|
||
|
/*
|
||
|
* find_first_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to start the search at
|
||
|
* @size: The maximum size to search
|
||
|
*
|
||
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
||
|
* containing a bit.
|
||
|
*/
|
||
|
extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
|
||
|
{
|
||
|
unsigned long dummy;
|
||
|
int res;
|
||
|
|
||
|
if (!size)
|
||
|
return 0;
|
||
|
|
||
|
__asm__ (".set\tnoreorder\n\t"
|
||
|
".set\tnoat\n"
|
||
|
"1:\tsubu\t$1,%6,%0\n\t"
|
||
|
"blez\t$1,2f\n\t"
|
||
|
"lw\t$1,(%5)\n\t"
|
||
|
"addiu\t%5,4\n\t"
|
||
|
#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
|
||
|
(_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
|
||
|
(_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
|
||
|
"beql\t%1,$1,1b\n\t"
|
||
|
"addiu\t%0,32\n\t"
|
||
|
#else
|
||
|
"addiu\t%0,32\n\t"
|
||
|
"beq\t%1,$1,1b\n\t"
|
||
|
"nop\n\t"
|
||
|
"subu\t%0,32\n\t"
|
||
|
#endif
|
||
|
#ifdef __MIPSEB__
|
||
|
#error "Fix this for big endian"
|
||
|
#endif /* __MIPSEB__ */
|
||
|
"li\t%1,1\n"
|
||
|
"1:\tand\t%2,$1,%1\n\t"
|
||
|
"beqz\t%2,2f\n\t"
|
||
|
"sll\t%1,%1,1\n\t"
|
||
|
"bnez\t%1,1b\n\t"
|
||
|
"add\t%0,%0,1\n\t"
|
||
|
".set\tat\n\t"
|
||
|
".set\treorder\n"
|
||
|
"2:"
|
||
|
: "=r" (res), "=r" (dummy), "=r" (addr)
|
||
|
: "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
|
||
|
"2" (addr), "r" (size)
|
||
|
: "$1");
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* find_next_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to base the search on
|
||
|
* @offset: The bitnumber to start searching at
|
||
|
* @size: The maximum size to search
|
||
|
*/
|
||
|
extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
|
||
|
{
|
||
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
||
|
int set = 0, bit = offset & 31, res;
|
||
|
unsigned long dummy;
|
||
|
|
||
|
if (bit) {
|
||
|
/*
|
||
|
* Look for zero in first byte
|
||
|
*/
|
||
|
#ifdef __MIPSEB__
|
||
|
#error "Fix this for big endian byte order"
|
||
|
#endif
|
||
|
__asm__(".set\tnoreorder\n\t"
|
||
|
".set\tnoat\n"
|
||
|
"1:\tand\t$1,%4,%1\n\t"
|
||
|
"beqz\t$1,1f\n\t"
|
||
|
"sll\t%1,%1,1\n\t"
|
||
|
"bnez\t%1,1b\n\t"
|
||
|
"addiu\t%0,1\n\t"
|
||
|
".set\tat\n\t"
|
||
|
".set\treorder\n"
|
||
|
"1:"
|
||
|
: "=r" (set), "=r" (dummy)
|
||
|
: "0" (0), "1" (1 << bit), "r" (*p)
|
||
|
: "$1");
|
||
|
if (set < (32 - bit))
|
||
|
return set + offset;
|
||
|
set = 32 - bit;
|
||
|
p++;
|
||
|
}
|
||
|
/*
|
||
|
* No zero yet, search remaining full bytes for a zero
|
||
|
*/
|
||
|
res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
|
||
|
return offset + set + res;
|
||
|
}
|
||
|
|
||
|
#endif /* !(__MIPSEB__) */
|
||
|
|
||
|
/*
|
||
|
* ffz - find first zero in word.
|
||
|
* @word: The word to search
|
||
|
*
|
||
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
||
|
*/
|
||
|
extern __inline__ unsigned long ffz(unsigned long word)
|
||
|
{
|
||
|
unsigned int __res;
|
||
|
unsigned int mask = 1;
|
||
|
|
||
|
__asm__ (
|
||
|
".set\tnoreorder\n\t"
|
||
|
".set\tnoat\n\t"
|
||
|
"move\t%0,$0\n"
|
||
|
"1:\tand\t$1,%2,%1\n\t"
|
||
|
"beqz\t$1,2f\n\t"
|
||
|
"sll\t%1,1\n\t"
|
||
|
"bnez\t%1,1b\n\t"
|
||
|
"addiu\t%0,1\n\t"
|
||
|
".set\tat\n\t"
|
||
|
".set\treorder\n"
|
||
|
"2:\n\t"
|
||
|
: "=&r" (__res), "=r" (mask)
|
||
|
: "r" (word), "1" (mask)
|
||
|
: "$1");
|
||
|
|
||
|
return __res;
|
||
|
}
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/**
|
||
|
* ffs - find first bit set
|
||
|
* @x: the word to search
|
||
|
*
|
||
|
* This is defined the same way as
|
||
|
* the libc and compiler builtin ffs routines, therefore
|
||
|
* differs in spirit from the above ffz (man ffs).
|
||
|
*/
|
||
|
|
||
|
#define ffs(x) generic_ffs(x)
|
||
|
|
||
|
/*
|
||
|
* hweightN - returns the hamming weight of a N-bit word
|
||
|
* @x: the word to weigh
|
||
|
*
|
||
|
* The Hamming Weight of a number is the total number of bits set in it.
|
||
|
*/
|
||
|
|
||
|
#define hweight32(x) generic_hweight32(x)
|
||
|
#define hweight16(x) generic_hweight16(x)
|
||
|
#define hweight8(x) generic_hweight8(x)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#ifdef __MIPSEB__
|
||
|
/*
|
||
|
* find_next_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to base the search on
|
||
|
* @offset: The bitnumber to start searching at
|
||
|
* @size: The maximum size to search
|
||
|
*/
|
||
|
extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
|
||
|
{
|
||
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
||
|
unsigned long result = offset & ~31UL;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
if (offset >= size)
|
||
|
return size;
|
||
|
size -= result;
|
||
|
offset &= 31UL;
|
||
|
if (offset) {
|
||
|
tmp = *(p++);
|
||
|
tmp |= ~0UL >> (32-offset);
|
||
|
if (size < 32)
|
||
|
goto found_first;
|
||
|
if (~tmp)
|
||
|
goto found_middle;
|
||
|
size -= 32;
|
||
|
result += 32;
|
||
|
}
|
||
|
while (size & ~31UL) {
|
||
|
if (~(tmp = *(p++)))
|
||
|
goto found_middle;
|
||
|
result += 32;
|
||
|
size -= 32;
|
||
|
}
|
||
|
if (!size)
|
||
|
return result;
|
||
|
tmp = *p;
|
||
|
|
||
|
found_first:
|
||
|
tmp |= ~0UL << size;
|
||
|
found_middle:
|
||
|
return result + ffz(tmp);
|
||
|
}
|
||
|
|
||
|
/* Linus sez that gcc can optimize the following correctly, we'll see if this
|
||
|
* holds on the Sparc as it does for the ALPHA.
|
||
|
*/
|
||
|
|
||
|
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
||
|
/*
|
||
|
* find_first_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to start the search at
|
||
|
* @size: The maximum size to search
|
||
|
*
|
||
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
||
|
* containing a bit.
|
||
|
*/
|
||
|
extern int find_first_zero_bit (void *addr, unsigned size);
|
||
|
#endif
|
||
|
|
||
|
#define find_first_zero_bit(addr, size) \
|
||
|
find_next_zero_bit((addr), (size), 0)
|
||
|
|
||
|
#endif /* (__MIPSEB__) */
|
||
|
|
||
|
/* Now for the ext2 filesystem bit operations and helper routines. */
|
||
|
|
||
|
#ifdef __MIPSEB__
|
||
|
extern __inline__ int ext2_set_bit(int nr, void * addr)
|
||
|
{
|
||
|
int mask, retval, flags;
|
||
|
unsigned char *ADDR = (unsigned char *) addr;
|
||
|
|
||
|
ADDR += nr >> 3;
|
||
|
mask = 1 << (nr & 0x07);
|
||
|
save_and_cli(flags);
|
||
|
retval = (mask & *ADDR) != 0;
|
||
|
*ADDR |= mask;
|
||
|
restore_flags(flags);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
extern __inline__ int ext2_clear_bit(int nr, void * addr)
|
||
|
{
|
||
|
int mask, retval, flags;
|
||
|
unsigned char *ADDR = (unsigned char *) addr;
|
||
|
|
||
|
ADDR += nr >> 3;
|
||
|
mask = 1 << (nr & 0x07);
|
||
|
save_and_cli(flags);
|
||
|
retval = (mask & *ADDR) != 0;
|
||
|
*ADDR &= ~mask;
|
||
|
restore_flags(flags);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
extern __inline__ int ext2_test_bit(int nr, const void * addr)
|
||
|
{
|
||
|
int mask;
|
||
|
const unsigned char *ADDR = (const unsigned char *) addr;
|
||
|
|
||
|
ADDR += nr >> 3;
|
||
|
mask = 1 << (nr & 0x07);
|
||
|
return ((mask & *ADDR) != 0);
|
||
|
}
|
||
|
|
||
|
#define ext2_find_first_zero_bit(addr, size) \
|
||
|
ext2_find_next_zero_bit((addr), (size), 0)
|
||
|
|
||
|
extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
||
|
{
|
||
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
||
|
unsigned long result = offset & ~31UL;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
if (offset >= size)
|
||
|
return size;
|
||
|
size -= result;
|
||
|
offset &= 31UL;
|
||
|
if(offset) {
|
||
|
/* We hold the little endian value in tmp, but then the
|
||
|
* shift is illegal. So we could keep a big endian value
|
||
|
* in tmp, like this:
|
||
|
*
|
||
|
* tmp = __swab32(*(p++));
|
||
|
* tmp |= ~0UL >> (32-offset);
|
||
|
*
|
||
|
* but this would decrease preformance, so we change the
|
||
|
* shift:
|
||
|
*/
|
||
|
tmp = *(p++);
|
||
|
tmp |= __swab32(~0UL >> (32-offset));
|
||
|
if(size < 32)
|
||
|
goto found_first;
|
||
|
if(~tmp)
|
||
|
goto found_middle;
|
||
|
size -= 32;
|
||
|
result += 32;
|
||
|
}
|
||
|
while(size & ~31UL) {
|
||
|
if(~(tmp = *(p++)))
|
||
|
goto found_middle;
|
||
|
result += 32;
|
||
|
size -= 32;
|
||
|
}
|
||
|
if(!size)
|
||
|
return result;
|
||
|
tmp = *p;
|
||
|
|
||
|
found_first:
|
||
|
/* tmp is little endian, so we would have to swab the shift,
|
||
|
* see above. But then we have to swab tmp below for ffz, so
|
||
|
* we might as well do this here.
|
||
|
*/
|
||
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
||
|
found_middle:
|
||
|
return result + ffz(__swab32(tmp));
|
||
|
}
|
||
|
#else /* !(__MIPSEB__) */
|
||
|
|
||
|
/* Native ext2 byte ordering, just collapse using defines. */
|
||
|
#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
|
||
|
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
|
||
|
#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
|
||
|
#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
|
||
|
#define ext2_find_next_zero_bit(addr, size, offset) \
|
||
|
find_next_zero_bit((addr), (size), (offset))
|
||
|
|
||
|
#endif /* !(__MIPSEB__) */
|
||
|
|
||
|
/*
|
||
|
* Bitmap functions for the minix filesystem.
|
||
|
* FIXME: These assume that Minix uses the native byte/bitorder.
|
||
|
* This limits the Minix filesystem's value for data exchange very much.
|
||
|
*/
|
||
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
||
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
||
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
||
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
||
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
||
|
|
||
|
#endif /* _ASM_BITOPS_H */
|