|
|
|
/*
|
|
|
|
* (C) Copyright 2002
|
|
|
|
* David Mueller, ELSOFT AG, d.mueller@elsoft.ch
|
|
|
|
*
|
|
|
|
* See file CREDITS for list of people who contributed to this
|
|
|
|
* project.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* This code should work for both the S3C2400 and the S3C2410
|
|
|
|
* as they seem to have the same I2C controller inside.
|
|
|
|
* The different address mapping is handled by the s3c24xx.h files below.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <asm/arch/s3c24x0_cpu.h>
|
|
|
|
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <i2c.h>
|
|
|
|
|
|
|
|
#ifdef CONFIG_HARD_I2C
|
|
|
|
|
|
|
|
#define I2C_WRITE 0
|
|
|
|
#define I2C_READ 1
|
|
|
|
|
|
|
|
#define I2C_OK 0
|
|
|
|
#define I2C_NOK 1
|
|
|
|
#define I2C_NACK 2
|
|
|
|
#define I2C_NOK_LA 3 /* Lost arbitration */
|
|
|
|
#define I2C_NOK_TOUT 4 /* time out */
|
|
|
|
|
|
|
|
#define I2CSTAT_BSY 0x20 /* Busy bit */
|
|
|
|
#define I2CSTAT_NACK 0x01 /* Nack bit */
|
|
|
|
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
|
|
|
|
#define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
|
|
|
|
#define I2C_MODE_MR 0x80 /* Master Receive Mode */
|
|
|
|
#define I2C_START_STOP 0x20 /* START / STOP */
|
|
|
|
#define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
|
|
|
|
|
|
|
|
#define I2C_TIMEOUT 1 /* 1 second */
|
|
|
|
|
|
|
|
static int GetI2CSDA(void)
|
|
|
|
{
|
|
|
|
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
|
|
|
|
|
|
|
|
#ifdef CONFIG_S3C2410
|
|
|
|
return (readl(&gpio->gpedat) & 0x8000) >> 15;
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_S3C2400
|
|
|
|
return (readl(&gpio->pgdat) & 0x0020) >> 5;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
static void SetI2CSDA(int x)
|
|
|
|
{
|
|
|
|
rGPEDAT = (rGPEDAT & ~0x8000) | (x & 1) << 15;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void SetI2CSCL(int x)
|
|
|
|
{
|
|
|
|
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
|
|
|
|
|
|
|
|
#ifdef CONFIG_S3C2410
|
|
|
|
writel((readl(&gpio->gpedat) & ~0x4000) | (x & 1) << 14, &gpio->gpedat);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_S3C2400
|
|
|
|
writel((readl(&gpio->pgdat) & ~0x0040) | (x & 1) << 6, &gpio->pgdat);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static int WaitForXfer(void)
|
|
|
|
{
|
|
|
|
struct s3c24x0_i2c *i2c = s3c24x0_get_base_i2c();
|
|
|
|
int i;
|
|
|
|
|
|
|
|
i = I2C_TIMEOUT * 10000;
|
|
|
|
while (!(readl(&i2c->iiccon) & I2CCON_IRPND) && (i > 0)) {
|
|
|
|
udelay(100);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (readl(&i2c->iiccon) & I2CCON_IRPND) ? I2C_OK : I2C_NOK_TOUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int IsACK(void)
|
|
|
|
{
|
|
|
|
struct s3c24x0_i2c *i2c = s3c24x0_get_base_i2c();
|
|
|
|
|
|
|
|
return !(readl(&i2c->iicstat) & I2CSTAT_NACK);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ReadWriteByte(void)
|
|
|
|
{
|
|
|
|
struct s3c24x0_i2c *i2c = s3c24x0_get_base_i2c();
|
|
|
|
|
|
|
|
writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
|
|
|
|
}
|
|
|
|
|
|
|
|
void i2c_init(int speed, int slaveadd)
|
|
|
|
{
|
|
|
|
struct s3c24x0_i2c *i2c = s3c24x0_get_base_i2c();
|
|
|
|
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
|
|
|
|
ulong freq, pres = 16, div;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* wait for some time to give previous transfer a chance to finish */
|
|
|
|
|
|
|
|
i = I2C_TIMEOUT * 1000;
|
|
|
|
while ((readl(&i2c->iicstat) && I2CSTAT_BSY) && (i > 0)) {
|
|
|
|
udelay(1000);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((readl(&i2c->iicstat) & I2CSTAT_BSY) || GetI2CSDA() == 0) {
|
|
|
|
#ifdef CONFIG_S3C2410
|
|
|
|
ulong old_gpecon = readl(&gpio->gpecon);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_S3C2400
|
|
|
|
ulong old_gpecon = readl(&gpio->pgcon);
|
|
|
|
#endif
|
|
|
|
/* bus still busy probably by (most) previously interrupted
|
|
|
|
transfer */
|
|
|
|
|
|
|
|
#ifdef CONFIG_S3C2410
|
|
|
|
/* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
|
|
|
|
writel((readl(&gpio->gpecon) & ~0xF0000000) | 0x10000000,
|
|
|
|
&gpio->gpecon);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_S3C2400
|
|
|
|
/* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
|
|
|
|
writel((readl(&gpio->pgcon) & ~0x00003c00) | 0x00001000,
|
|
|
|
&gpio->pgcon);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* toggle I2CSCL until bus idle */
|
|
|
|
SetI2CSCL(0);
|
|
|
|
udelay(1000);
|
|
|
|
i = 10;
|
|
|
|
while ((i > 0) && (GetI2CSDA() != 1)) {
|
|
|
|
SetI2CSCL(1);
|
|
|
|
udelay(1000);
|
|
|
|
SetI2CSCL(0);
|
|
|
|
udelay(1000);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
SetI2CSCL(1);
|
|
|
|
udelay(1000);
|
|
|
|
|
|
|
|
/* restore pin functions */
|
|
|
|
#ifdef CONFIG_S3C2410
|
|
|
|
writel(old_gpecon, &gpio->gpecon);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_S3C2400
|
|
|
|
writel(old_gpecon, &gpio->pgcon);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* calculate prescaler and divisor values */
|
|
|
|
freq = get_PCLK();
|
|
|
|
if ((freq / pres / (16 + 1)) > speed)
|
|
|
|
/* set prescaler to 512 */
|
|
|
|
pres = 512;
|
|
|
|
|
|
|
|
div = 0;
|
|
|
|
while ((freq / pres / (div + 1)) > speed)
|
|
|
|
div++;
|
|
|
|
|
|
|
|
/* set prescaler, divisor according to freq, also set
|
|
|
|
* ACKGEN, IRQ */
|
|
|
|
writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
|
|
|
|
|
|
|
|
/* init to SLAVE REVEIVE and set slaveaddr */
|
|
|
|
writel(0, &i2c->iicstat);
|
|
|
|
writel(slaveadd, &i2c->iicadd);
|
|
|
|
/* program Master Transmit (and implicit STOP) */
|
|
|
|
writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cmd_type is 0 for write, 1 for read.
|
|
|
|
*
|
|
|
|
* addr_len can take any value from 0-255, it is only limited
|
|
|
|
* by the char, we could make it larger if needed. If it is
|
|
|
|
* 0 we skip the address write cycle.
|
|
|
|
*/
|
|
|
|
static
|
|
|
|
int i2c_transfer(unsigned char cmd_type,
|
|
|
|
unsigned char chip,
|
|
|
|
unsigned char addr[],
|
|
|
|
unsigned char addr_len,
|
|
|
|
unsigned char data[], unsigned short data_len)
|
|
|
|
{
|
|
|
|
struct s3c24x0_i2c *i2c = s3c24x0_get_base_i2c();
|
|
|
|
int i, result;
|
|
|
|
|
|
|
|
if (data == 0 || data_len == 0) {
|
|
|
|
/*Don't support data transfer of no length or to address 0 */
|
|
|
|
printf("i2c_transfer: bad call\n");
|
|
|
|
return I2C_NOK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check I2C bus idle */
|
|
|
|
i = I2C_TIMEOUT * 1000;
|
|
|
|
while ((readl(&i2c->iicstat) & I2CSTAT_BSY) && (i > 0)) {
|
|
|
|
udelay(1000);
|
|
|
|
i--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (readl(&i2c->iicstat) & I2CSTAT_BSY)
|
|
|
|
return I2C_NOK_TOUT;
|
|
|
|
|
|
|
|
writel(readl(&i2c->iiccon) | 0x80, &i2c->iiccon);
|
|
|
|
result = I2C_OK;
|
|
|
|
|
|
|
|
switch (cmd_type) {
|
|
|
|
case I2C_WRITE:
|
|
|
|
if (addr && addr_len) {
|
|
|
|
writel(chip, &i2c->iicds);
|
|
|
|
/* send START */
|
|
|
|
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
|
|
|
|
&i2c->iicstat);
|
|
|
|
i = 0;
|
|
|
|
while ((i < addr_len) && (result == I2C_OK)) {
|
|
|
|
result = WaitForXfer();
|
|
|
|
writel(addr[i], &i2c->iicds);
|
|
|
|
ReadWriteByte();
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
i = 0;
|
|
|
|
while ((i < data_len) && (result == I2C_OK)) {
|
|
|
|
result = WaitForXfer();
|
|
|
|
writel(data[i], &i2c->iicds);
|
|
|
|
ReadWriteByte();
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
writel(chip, &i2c->iicds);
|
|
|
|
/* send START */
|
|
|
|
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
|
|
|
|
&i2c->iicstat);
|
|
|
|
i = 0;
|
|
|
|
while ((i < data_len) && (result = I2C_OK)) {
|
|
|
|
result = WaitForXfer();
|
|
|
|
writel(data[i], &i2c->iicds);
|
|
|
|
ReadWriteByte();
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (result == I2C_OK)
|
|
|
|
result = WaitForXfer();
|
|
|
|
|
|
|
|
/* send STOP */
|
|
|
|
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
|
|
|
|
ReadWriteByte();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case I2C_READ:
|
|
|
|
if (addr && addr_len) {
|
|
|
|
writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
|
|
|
|
writel(chip, &i2c->iicds);
|
|
|
|
/* send START */
|
|
|
|
writel(readl(&i2c->iicstat) | I2C_START_STOP,
|
|
|
|
&i2c->iicstat);
|
|
|
|
result = WaitForXfer();
|
|
|
|
if (IsACK()) {
|
|
|
|
i = 0;
|
|
|
|
while ((i < addr_len) && (result == I2C_OK)) {
|
|
|
|
writel(addr[i], &i2c->iicds);
|
|
|
|
ReadWriteByte();
|
|
|
|
result = WaitForXfer();
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
writel(chip, &i2c->iicds);
|
|
|
|
/* resend START */
|
|
|
|
writel(I2C_MODE_MR | I2C_TXRX_ENA |
|
|
|
|
I2C_START_STOP, &i2c->iicstat);
|
|
|
|
ReadWriteByte();
|
|
|
|
result = WaitForXfer();
|
|
|
|
i = 0;
|
|
|
|
while ((i < data_len) && (result == I2C_OK)) {
|
|
|
|
/* disable ACK for final READ */
|
|
|
|
if (i == data_len - 1)
|
|
|
|
writel(readl(&i2c->iiccon)
|
|
|
|
& ~0x80, &i2c->iiccon);
|
|
|
|
ReadWriteByte();
|
|
|
|
result = WaitForXfer();
|
|
|
|
data[i] = readl(&i2c->iicds);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
result = I2C_NACK;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
|
|
|
|
writel(chip, &i2c->iicds);
|
|
|
|
/* send START */
|
|
|
|
writel(readl(&i2c->iicstat) | I2C_START_STOP,
|
|
|
|
&i2c->iicstat);
|
|
|
|
result = WaitForXfer();
|
|
|
|
|
|
|
|
if (IsACK()) {
|
|
|
|
i = 0;
|
|
|
|
while ((i < data_len) && (result == I2C_OK)) {
|
|
|
|
/* disable ACK for final READ */
|
|
|
|
if (i == data_len - 1)
|
|
|
|
writel(readl(&i2c->iiccon) &
|
|
|
|
~0x80, &i2c->iiccon);
|
|
|
|
ReadWriteByte();
|
|
|
|
result = WaitForXfer();
|
|
|
|
data[i] = readl(&i2c->iicds);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
result = I2C_NACK;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* send STOP */
|
|
|
|
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
|
|
|
|
ReadWriteByte();
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
printf("i2c_transfer: bad call\n");
|
|
|
|
result = I2C_NOK;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (result);
|
|
|
|
}
|
|
|
|
|
|
|
|
int i2c_probe(uchar chip)
|
|
|
|
{
|
|
|
|
uchar buf[1];
|
|
|
|
|
|
|
|
buf[0] = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* What is needed is to send the chip address and verify that the
|
|
|
|
* address was <ACK>ed (i.e. there was a chip at that address which
|
|
|
|
* drove the data line low).
|
|
|
|
*/
|
|
|
|
return i2c_transfer(I2C_READ, chip << 1, 0, 0, buf, 1) != I2C_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
|
|
|
|
{
|
|
|
|
uchar xaddr[4];
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (alen > 4) {
|
|
|
|
printf("I2C read: addr len %d not supported\n", alen);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (alen > 0) {
|
|
|
|
xaddr[0] = (addr >> 24) & 0xFF;
|
|
|
|
xaddr[1] = (addr >> 16) & 0xFF;
|
|
|
|
xaddr[2] = (addr >> 8) & 0xFF;
|
|
|
|
xaddr[3] = addr & 0xFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
|
|
|
/*
|
|
|
|
* EEPROM chips that implement "address overflow" are ones
|
|
|
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
|
|
|
* address and the extra bits end up in the "chip address"
|
|
|
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
|
|
|
* four 256 byte chips.
|
|
|
|
*
|
|
|
|
* Note that we consider the length of the address field to
|
|
|
|
* still be one byte because the extra address bits are
|
|
|
|
* hidden in the chip address.
|
|
|
|
*/
|
|
|
|
if (alen > 0)
|
|
|
|
chip |= ((addr >> (alen * 8)) &
|
|
|
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
|
|
|
#endif
|
|
|
|
if ((ret =
|
|
|
|
i2c_transfer(I2C_READ, chip << 1, &xaddr[4 - alen], alen,
|
|
|
|
buffer, len)) != 0) {
|
|
|
|
printf("I2c read: failed %d\n", ret);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
|
|
|
|
{
|
|
|
|
uchar xaddr[4];
|
|
|
|
|
|
|
|
if (alen > 4) {
|
|
|
|
printf("I2C write: addr len %d not supported\n", alen);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (alen > 0) {
|
|
|
|
xaddr[0] = (addr >> 24) & 0xFF;
|
|
|
|
xaddr[1] = (addr >> 16) & 0xFF;
|
|
|
|
xaddr[2] = (addr >> 8) & 0xFF;
|
|
|
|
xaddr[3] = addr & 0xFF;
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
|
|
|
|
/*
|
|
|
|
* EEPROM chips that implement "address overflow" are ones
|
|
|
|
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
|
|
|
* address and the extra bits end up in the "chip address"
|
|
|
|
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
|
|
|
|
* four 256 byte chips.
|
|
|
|
*
|
|
|
|
* Note that we consider the length of the address field to
|
|
|
|
* still be one byte because the extra address bits are
|
|
|
|
* hidden in the chip address.
|
|
|
|
*/
|
|
|
|
if (alen > 0)
|
|
|
|
chip |= ((addr >> (alen * 8)) &
|
|
|
|
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
|
|
|
|
#endif
|
|
|
|
return (i2c_transfer
|
|
|
|
(I2C_WRITE, chip << 1, &xaddr[4 - alen], alen, buffer,
|
|
|
|
len) != 0);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_HARD_I2C */
|