upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/drivers/net/ks8851_mll.c

634 lines
15 KiB

/*
* Micrel KS8851_MLL 16bit Network driver
* Copyright (c) 2011 Roberto Cerati <roberto.cerati@bticino.it>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/io.h>
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include "ks8851_mll.h"
#define DRIVERNAME "ks8851_mll"
#define MAX_RECV_FRAMES 32
#define MAX_BUF_SIZE 2048
#define TX_BUF_SIZE 2000
#define RX_BUF_SIZE 2000
static const struct chip_id chip_ids[] = {
{CIDER_ID, "KSZ8851"},
{0, NULL},
};
/*
* union ks_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks_tx_hdr {
u8 txb[4];
__le16 txw[2];
};
/*
* struct ks_net - KS8851 driver private data
* @net_device : The network device we're bound to
* @txh : temporaly buffer to save status/length.
* @frame_head_info : frame header information for multi-pkt rx.
* @statelock : Lock on this structure for tx list.
* @msg_enable : The message flags controlling driver output (see ethtool).
* @frame_cnt : number of frames received.
* @bus_width : i/o bus width.
* @irq : irq number assigned to this device.
* @rc_rxqcr : Cached copy of KS_RXQCR.
* @rc_txcr : Cached copy of KS_TXCR.
* @rc_ier : Cached copy of KS_IER.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @cmd_reg_cache : command register cached.
* @cmd_reg_cache_int : command register cached. Used in the irq handler.
* @promiscuous : promiscuous mode indicator.
* @all_mcast : mutlicast indicator.
* @mcast_lst_size : size of multicast list.
* @mcast_lst : multicast list.
* @mcast_bits : multicast enabed.
* @mac_addr : MAC address assigned to this device.
* @fid : frame id.
* @extra_byte : number of extra byte prepended rx pkt.
* @enabled : indicator this device works.
*/
/* Receive multiplex framer header info */
struct type_frame_head {
u16 sts; /* Frame status */
u16 len; /* Byte count */
} fr_h_i[MAX_RECV_FRAMES];
struct ks_net {
struct net_device *netdev;
union ks_tx_hdr txh;
struct type_frame_head *frame_head_info;
u32 msg_enable;
u32 frame_cnt;
int bus_width;
int irq;
u16 rc_rxqcr;
u16 rc_txcr;
u16 rc_ier;
u16 sharedbus;
u16 cmd_reg_cache;
u16 cmd_reg_cache_int;
u16 promiscuous;
u16 all_mcast;
u16 mcast_lst_size;
u8 mcast_lst[MAX_MCAST_LST][MAC_ADDR_LEN];
u8 mcast_bits[HW_MCAST_SIZE];
u8 mac_addr[6];
u8 fid;
u8 extra_byte;
u8 enabled;
} ks_str, *ks;
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
static u8 ks_rdreg8(struct eth_device *dev, u16 offset)
{
u8 shift_bit = offset & 0x03;
u8 shift_data = (offset & 1) << 3;
writew(offset | (BE0 << shift_bit), dev->iobase + 2);
return (u8)(readw(dev->iobase) >> shift_data);
}
static u16 ks_rdreg16(struct eth_device *dev, u16 offset)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
return readw(dev->iobase);
}
static void ks_wrreg8(struct eth_device *dev, u16 offset, u8 val)
{
u8 shift_bit = (offset & 0x03);
u16 value_write = (u16)(val << ((offset & 1) << 3));
writew(offset | (BE0 << shift_bit), dev->iobase + 2);
writew(value_write, dev->iobase);
}
static void ks_wrreg16(struct eth_device *dev, u16 offset, u16 val)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
writew(val, dev->iobase);
}
/*
* ks_inblk - read a block of data from QMU. This is called after sudo DMA mode
* enabled.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*/
static inline void ks_inblk(struct eth_device *dev, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = readw(dev->iobase);
}
/*
* ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*/
static inline void ks_outblk(struct eth_device *dev, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
writew(*wptr++, dev->iobase);
}
static void ks_enable_int(struct eth_device *dev)
{
ks_wrreg16(dev, KS_IER, ks->rc_ier);
}
static void ks_set_powermode(struct eth_device *dev, unsigned pwrmode)
{
unsigned pmecr;
ks_rdreg16(dev, KS_GRR);
pmecr = ks_rdreg16(dev, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(dev, KS_PMECR, pmecr);
}
/*
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*/
static void ks_read_config(struct eth_device *dev)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work. */
reg_data = ks_rdreg8(dev, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(dev, KS_CCR + 1) << 8;
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
/*
* There are garbage data when reading data from QMU,
* depending on bus-width.
*/
if (reg_data & CCR_8BIT) {
ks->bus_width = ENUM_BUS_8BIT;
ks->extra_byte = 1;
} else if (reg_data & CCR_16BIT) {
ks->bus_width = ENUM_BUS_16BIT;
ks->extra_byte = 2;
} else {
ks->bus_width = ENUM_BUS_32BIT;
ks->extra_byte = 4;
}
}
/*
* ks_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct eth_device *dev, unsigned op)
{
/* Disable interrupt first */
ks_wrreg16(dev, KS_IER, 0x0000);
ks_wrreg16(dev, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(dev, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
void ks_enable_qmu(struct eth_device *dev)
{
u16 w;
w = ks_rdreg16(dev, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(dev, KS_TXCR, w | TXCR_TXE);
/* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */
w = ks_rdreg16(dev, KS_RXQCR);
ks_wrreg16(dev, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(dev, KS_RXCR1);
ks_wrreg16(dev, KS_RXCR1, w | RXCR1_RXE);
}
static void ks_disable_qmu(struct eth_device *dev)
{
u16 w;
w = ks_rdreg16(dev, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(dev, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(dev, KS_RXCR1);
w &= ~RXCR1_RXE;
ks_wrreg16(dev, KS_RXCR1, w);
}
static inline void ks_read_qmu(struct eth_device *dev, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/*
* 2. read prepend data
*
* read 4 + extra bytes and discard them.
* extra bytes for dummy, 2 for status, 2 for len
*/
if (r)
ks_rdreg8(dev, 0);
ks_inblk(dev, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(dev, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff);
}
static void ks_rcv(struct eth_device *dev, uchar **pv_data)
{
struct type_frame_head *frame_hdr = ks->frame_head_info;
int i;
ks->frame_cnt = ks_rdreg16(dev, KS_RXFCTR) >> 8;
/* read all header information */
for (i = 0; i < ks->frame_cnt; i++) {
/* Checking Received packet status */
frame_hdr->sts = ks_rdreg16(dev, KS_RXFHSR);
/* Get packet len from hardware */
frame_hdr->len = ks_rdreg16(dev, KS_RXFHBCR);
frame_hdr++;
}
frame_hdr = ks->frame_head_info;
while (ks->frame_cnt--) {
if ((frame_hdr->sts & RXFSHR_RXFV) &&
(frame_hdr->len < RX_BUF_SIZE) &&
frame_hdr->len) {
/* read data block including CRC 4 bytes */
ks_read_qmu(dev, (u16 *)(*pv_data), frame_hdr->len);
/* net_rx_packets buffer size is ok (*pv_data) */
net_process_received_packet(*pv_data, frame_hdr->len);
pv_data++;
} else {
ks_wrreg16(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
printf(DRIVERNAME ": bad packet\n");
}
frame_hdr++;
}
}
/*
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct eth_device *dev)
{
u16 both_done = MBIR_TXMBF | MBIR_RXMBF;
u16 mbir;
int ret = 0;
mbir = ks_rdreg16(dev, KS_MBIR);
if ((mbir & both_done) != both_done) {
printf(DRIVERNAME ": Memory selftest not finished\n");
return 0;
}
if (mbir & MBIR_TXMBFA) {
printf(DRIVERNAME ": TX memory selftest fails\n");
ret |= 1;
}
if (mbir & MBIR_RXMBFA) {
printf(DRIVERNAME ": RX memory selftest fails\n");
ret |= 2;
}
debug(DRIVERNAME ": the selftest passes\n");
return ret;
}
static void ks_setup(struct eth_device *dev)
{
u16 w;
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(dev, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks->rc_rxqcr = RXQCR_CMD_CNTL;
ks_wrreg16(dev, KS_RXQCR, ks->rc_rxqcr);
/*
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(dev, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(dev, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(dev, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
/* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(dev, KS_RXCR1, w);
}
static void ks_setup_int(struct eth_device *dev)
{
ks->rc_ier = 0x00;
/* Clear the interrupts status of the hardware. */
ks_wrreg16(dev, KS_ISR, 0xffff);
/* Enables the interrupts of the hardware. */
ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
}
static int ks8851_mll_detect_chip(struct eth_device *dev)
{
unsigned short val, i;
ks_read_config(dev);
val = ks_rdreg16(dev, KS_CIDER);
if (val == 0xffff) {
/* Special case -- no chip present */
printf(DRIVERNAME ": is chip mounted ?\n");
return -1;
} else if ((val & 0xfff0) != CIDER_ID) {
printf(DRIVERNAME ": Invalid chip id 0x%04x\n", val);
return -1;
}
debug("Read back KS8851 id 0x%x\n", val);
/* only one entry in the table */
val &= 0xfff0;
for (i = 0; chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == val)
break;
}
if (!chip_ids[i].id) {
printf(DRIVERNAME ": Unknown chip ID %04x\n", val);
return -1;
}
dev->priv = (void *)&chip_ids[i];
return 0;
}
static void ks8851_mll_reset(struct eth_device *dev)
{
/* wake up powermode to normal mode */
ks_set_powermode(dev, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
/* Disable interrupt and reset */
ks_soft_reset(dev, GRR_GSR);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(dev, KS_IER, 0x0000);
ks_wrreg16(dev, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(dev);
}
static void ks8851_mll_phy_configure(struct eth_device *dev)
{
u16 data;
ks_setup(dev);
ks_setup_int(dev);
/* Probing the phy */
data = ks_rdreg16(dev, KS_OBCR);
ks_wrreg16(dev, KS_OBCR, data | OBCR_ODS_16MA);
debug(DRIVERNAME ": phy initialized\n");
}
static void ks8851_mll_enable(struct eth_device *dev)
{
ks_wrreg16(dev, KS_ISR, 0xffff);
ks_enable_int(dev);
ks_enable_qmu(dev);
}
static int ks8851_mll_init(struct eth_device *dev, bd_t *bd)
{
struct chip_id *id = dev->priv;
debug(DRIVERNAME ": detected %s controller\n", id->name);
if (ks_read_selftest(dev)) {
printf(DRIVERNAME ": Selftest failed\n");
return -1;
}
ks8851_mll_reset(dev);
/* Configure the PHY, initialize the link state */
ks8851_mll_phy_configure(dev);
/* static allocation of private informations */
ks->frame_head_info = fr_h_i;
/* Turn on Tx + Rx */
ks8851_mll_enable(dev);
return 0;
}
static void ks_write_qmu(struct eth_device *dev, u8 *pdata, u16 len)
{
/* start header at txb[0] to align txw entries */
ks->txh.txw[0] = 0;
ks->txh.txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/* 2. write status/lenth info */
ks_outblk(dev, ks->txh.txw, 4);
/* 3. write pkt data */
ks_outblk(dev, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(dev, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
do { } while (ks_rdreg16(dev, KS_TXQCR) & TXQCR_METFE);
}
static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
{
u8 *data = (u8 *)packet;
u16 tmplen = (u16)length;
u16 retv;
/*
* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
retv = ks_rdreg16(dev, KS_TXMIR) & 0x1fff;
if (retv >= tmplen + 12) {
ks_write_qmu(dev, data, tmplen);
return 0;
} else {
printf(DRIVERNAME ": failed to send packet: No buffer\n");
return -1;
}
}
static void ks8851_mll_halt(struct eth_device *dev)
{
ks8851_mll_reset(dev);
}
/*
* Maximum receive ring size; that is, the number of packets
* we can buffer before overflow happens. Basically, this just
* needs to be enough to prevent a packet being discarded while
* we are processing the previous one.
*/
static int ks8851_mll_recv(struct eth_device *dev)
{
u16 status;
status = ks_rdreg16(dev, KS_ISR);
ks_wrreg16(dev, KS_ISR, status);
if ((status & IRQ_RXI))
ks_rcv(dev, (uchar **)net_rx_packets);
if ((status & IRQ_LDI)) {
u16 pmecr = ks_rdreg16(dev, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(dev, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
return 0;
}
static int ks8851_mll_write_hwaddr(struct eth_device *dev)
{
u16 addrl, addrm, addrh;
addrh = (dev->enetaddr[0] << 8) | dev->enetaddr[1];
addrm = (dev->enetaddr[2] << 8) | dev->enetaddr[3];
addrl = (dev->enetaddr[4] << 8) | dev->enetaddr[5];
ks_wrreg16(dev, KS_MARH, addrh);
ks_wrreg16(dev, KS_MARM, addrm);
ks_wrreg16(dev, KS_MARL, addrl);
return 0;
}
int ks8851_mll_initialize(u8 dev_num, int base_addr)
{
struct eth_device *dev;
dev = malloc(sizeof(*dev));
if (!dev) {
printf("Error: Failed to allocate memory\n");
return -1;
}
memset(dev, 0, sizeof(*dev));
dev->iobase = base_addr;
ks = &ks_str;
/* Try to detect chip. Will fail if not present. */
if (ks8851_mll_detect_chip(dev)) {
free(dev);
return -1;
}
dev->init = ks8851_mll_init;
dev->halt = ks8851_mll_halt;
dev->send = ks8851_mll_send;
dev->recv = ks8851_mll_recv;
dev->write_hwaddr = ks8851_mll_write_hwaddr;
sprintf(dev->name, "%s-%hu", DRIVERNAME, dev_num);
eth_register(dev);
return 0;
}