upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/doc/README.nand

346 lines
13 KiB

# SPDX-License-Identifier: GPL-2.0+
NAND FLASH commands and notes
See NOTE below!!!
# (C) Copyright 2003
# Dave Ellis, SIXNET, dge@sixnetio.com
#
Commands:
nand bad
Print a list of all of the bad blocks in the current device.
nand device
Print information about the current NAND device.
nand device num
Make device `num' the current device and print information about it.
nand erase off|partition size
nand erase clean [off|partition size]
Erase `size' bytes starting at offset `off'. Alternatively partition
name can be specified, in this case size will be eventually limited
to not exceed partition size (this behaviour applies also to read
and write commands). Only complete erase blocks can be erased.
If `erase' is specified without an offset or size, the entire flash
is erased. If `erase' is specified with partition but without an
size, the entire partition is erased.
If `clean' is specified, a JFFS2-style clean marker is written to
each block after it is erased.
This command will not erase blocks that are marked bad. There is
a debug option in cmd_nand.c to allow bad blocks to be erased.
Please read the warning there before using it, as blocks marked
bad by the manufacturer must _NEVER_ be erased.
nand info
Print information about all of the NAND devices found.
nand read addr ofs|partition size
Read `size' bytes from `ofs' in NAND flash to `addr'. Blocks that
are marked bad are skipped. If a page cannot be read because an
uncorrectable data error is found, the command stops with an error.
nand read.oob addr ofs|partition size
Read `size' bytes from the out-of-band data area corresponding to
`ofs' in NAND flash to `addr'. This is limited to the 16 bytes of
data for one 512-byte page or 2 256-byte pages. There is no check
for bad blocks or ECC errors.
nand write addr ofs|partition size
Write `size' bytes from `addr' to `ofs' in NAND flash. Blocks that
are marked bad are skipped. If a page cannot be read because an
uncorrectable data error is found, the command stops with an error.
As JFFS2 skips blocks similarly, this allows writing a JFFS2 image,
as long as the image is short enough to fit even after skipping the
bad blocks. Compact images, such as those produced by mkfs.jffs2
should work well, but loading an image copied from another flash is
going to be trouble if there are any bad blocks.
nand write.trimffs addr ofs|partition size
Enabled by the CONFIG_CMD_NAND_TRIMFFS macro. This command will write to
the NAND flash in a manner identical to the 'nand write' command
described above -- with the additional check that all pages at the end
of eraseblocks which contain only 0xff data will not be written to the
NAND flash. This behaviour is required when flashing UBI images
containing UBIFS volumes as per the UBI FAQ[1].
[1] http://www.linux-mtd.infradead.org/doc/ubi.html#L_flasher_algo
nand write.oob addr ofs|partition size
Write `size' bytes from `addr' to the out-of-band data area
corresponding to `ofs' in NAND flash. This is limited to the 16 bytes
of data for one 512-byte page or 2 256-byte pages. There is no check
for bad blocks.
nand read.raw addr ofs|partition [count]
nand write.raw addr ofs|partition [count]
Read or write one or more pages at "ofs" in NAND flash, from or to
"addr" in memory. This is a raw access, so ECC is avoided and the
OOB area is transferred as well. If count is absent, it is assumed
to be one page. As with .yaffs2 accesses, the data is formatted as
a packed sequence of "data, oob, data, oob, ..." -- no alignment of
individual pages is maintained.
Configuration Options:
CONFIG_SYS_NAND_U_BOOT_OFFS
NAND Offset from where SPL will read u-boot image. This is the starting
address of u-boot MTD partition in NAND.
CONFIG_CMD_NAND
Enables NAND support and commands.
CONFIG_CMD_NAND_TORTURE
Enables the torture command (see description of this command below).
CONFIG_SYS_MAX_NAND_DEVICE
The maximum number of NAND devices you want to support.
mtd: move & update nand_ecclayout structure (plus board changes) nand_ecclayout is present in mtd.h at Linux. Move this structure to mtd.h to comply with Linux. Also, increase the ecc placement locations to 640 to suport device having writesize/oobsize of 8KB/640B. This means that the maximum oobsize has gone up to 640 bytes and consequently the maximum ecc placement locations have also gone up to 640. Changes from Prabhabkar's version (squashed into one patch to preserve bisectability): - Added _LARGE to MTD_MAX_*_ENTRIES This makes the names match current Linux source, and resolves a conflict between http://patchwork.ozlabs.org/patch/280488/ and http://patchwork.ozlabs.org/patch/284513/ The former was posted first and is closer to matching Linux, but unlike Linux it does not add _LARGE to the names. The second adds _LARGE to one of the names, and depends on it in a subsequent patch (http://patchwork.ozlabs.org/patch/284512/). - Made max oobfree/eccpos configurable, and used this on tricorder, alpr, ASH405, T4160QDS, and T4240QDS (these boards failed to build for me without doing so, due to a size increase). On tricorder SPL, this saves 2576 bytes (and makes the SPL build again) versus the new default of 640 eccpos and 32 oobfree, and saves 336 bytes versus the old default of 128 eccpos and 8 oobfree. Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> CC: Vipin Kumar <vipin.kumar@st.com> [scottwood@freescale.com: changes as described above] Signed-off-by: Scott Wood <scottwood@freescale.com> Cc: Thomas Weber <weber@corscience.de> Cc: Matthias Fuchs <matthias.fuchs@esd-electronics.com> Cc: Stefan Roese <sr@denx.de> Cc: York Sun <yorksun@freescale.com> Cc: Tom Rini <trini@ti.com> Reviewed-by: Stefan Roese <sr@denx.de>
11 years ago
CONFIG_SYS_NAND_MAX_ECCPOS
If specified, overrides the maximum number of ECC bytes
supported. Useful for reducing image size, especially with SPL.
This must be at least 48 if nand_base.c is used.
CONFIG_SYS_NAND_MAX_OOBFREE
If specified, overrides the maximum number of free OOB regions
supported. Useful for reducing image size, especially with SPL.
This must be at least 2 if nand_base.c is used.
CONFIG_SYS_NAND_MAX_CHIPS
The maximum number of NAND chips per device to be supported.
CONFIG_SYS_NAND_SELF_INIT
Traditionally, glue code in drivers/mtd/nand/nand.c has driven
the initialization process -- it provides the mtd and nand
structs, calls a board init function for a specific device,
calls nand_scan(), and registers with mtd.
This arrangement does not provide drivers with the flexibility to
run code between nand_scan_ident() and nand_scan_tail(), or other
deviations from the "normal" flow.
If a board defines CONFIG_SYS_NAND_SELF_INIT, drivers/mtd/nand/nand.c
will make one call to board_nand_init(), with no arguments. That
function is responsible for calling a driver init function for
each NAND device on the board, that performs all initialization
tasks except setting mtd->name, and registering with the rest of
U-Boot. Those last tasks are accomplished by calling nand_register()
on the new mtd device.
Example of new init to be added to the end of an existing driver
init:
/* chip is struct nand_chip, and is now provided by the driver. */
mtd = nand_to_mtd(&chip);
/*
* Fill in appropriate values if this driver uses these fields,
* or uses the standard read_byte/write_buf/etc. functions from
* nand_base.c that use these fields.
*/
chip.IO_ADDR_R = ...;
chip.IO_ADDR_W = ...;
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL))
error out
/*
* Insert here any code you wish to run after the chip has been
* identified, but before any other I/O is done.
*/
if (nand_scan_tail(mtd))
error out
/*
* devnum is the device number to be used in nand commands
* and in mtd->name. Must be less than CONFIG_SYS_MAX_NAND_DEVICE.
*/
if (nand_register(devnum, mtd))
error out
In addition to providing more flexibility to the driver, it reduces
the difference between a U-Boot driver and its Linux counterpart.
nand_init() is now reduced to calling board_nand_init() once, and
printing a size summary. This should also make it easier to
transition to delayed NAND initialization.
Please convert your driver even if you don't need the extra
flexibility, so that one day we can eliminate the old mechanism.
mtd: nand: omap: enable BCH ECC scheme using ELM for generic platform BCH8_ECC scheme implemented in omap_gpmc.c driver has following favours +-----------------------------------+-----------------+-----------------+ |ECC Scheme | ECC Calculation | Error Detection | +-----------------------------------+-----------------+-----------------+ |OMAP_ECC_BCH8_CODE_HW |GPMC |ELM H/W engine | |OMAP_ECC_BCH8_CODE_HW_DETECTION_SW |GPMC |S/W BCH library | +-----------------------------------+-----------------+-----------------+ Current implementation limits the BCH8_CODE_HW only for AM33xx device family. (using CONFIG_AM33XX). However, other SoC families (like TI81xx) also have ELM hardware module, and can support ECC error detection using ELM. This patch - removes CONFIG_AM33xx Thus this driver can be reused by all devices having ELM h/w engine. - adds omap_select_ecc_scheme() A common function to handle ecc-scheme related configurations. This can be used both during device-probe and via user-space u-boot commads to change ecc-scheme. During device probe ecc-scheme is selected based on CONFIG_NAND_OMAP_ELM or CONFIG_NAND_OMAP_BCH8 - enables CONFIG_BCH S/W library (lib/bch.c) required by OMAP_ECC_BCHx_CODE_HW_DETECTION_SW is enabled by CONFIG_BCH. - enables CONFIG_SYS_NAND_ONFI_DETECTION for auto-detection of ONFI compliant NAND devices - updates following README doc doc/README.nand board/ti/am335x/README doc/README.omap3 Signed-off-by: Pekon Gupta <pekon@ti.com> [scottwood@freescale.com: fixed unused variable warning] Signed-off-by: Scott Wood <scottwood@freescale.com>
11 years ago
CONFIG_SYS_NAND_ONFI_DETECTION
Enables detection of ONFI compliant devices during probe.
And fetching device parameters flashed on device, by parsing
ONFI parameter page.
Platform specific options
=========================
CONFIG_NAND_OMAP_GPMC
Enables omap_gpmc.c driver for OMAPx and AMxxxx platforms.
GPMC controller is used for parallel NAND flash devices, and can
do ECC calculation (not ECC error detection) for HAM1, BCH4, BCH8
and BCH16 ECC algorithms.
CONFIG_NAND_OMAP_ELM
Enables omap_elm.c driver for OMAPx and AMxxxx platforms.
ELM controller is used for ECC error detection (not ECC calculation)
of BCH4, BCH8 and BCH16 ECC algorithms.
Some legacy platforms like OMAP3xx do not have in-built ELM h/w engine,
thus such SoC platforms need to depend on software library for ECC error
detection. However ECC calculation on such plaforms would still be
done by GPMC controller.
CONFIG_SPL_NAND_AM33XX_BCH
Enables SPL-NAND driver (am335x_spl_bch.c) which supports ELM based
hardware ECC correction. This is useful for platforms which have ELM
hardware engine and use NAND boot mode.
Some legacy platforms like OMAP3xx do not have in-built ELM h/w engine,
so those platforms should use CONFIG_SPL_NAND_SIMPLE for enabling
SPL-NAND driver with software ECC correction support.
mtd: nand: omap: add CONFIG_NAND_OMAP_ECCSCHEME for selection of ecc-scheme This patch adds new CONFIG_NAND_OMAP_ECCSCHEME, replacing other distributed CONFIG_xx used for selecting NAND ecc-schemes. This patch aims at solving following issues. 1) Currently ecc-scheme is tied to SoC platform, which prevents user to select other ecc-schemes also supported in hardware. like; - most of OMAP3 SoC platforms use only 1-bit Hamming ecc-scheme, inspite the fact that they can use higher ecc-schemes like 8-bit ecc-schemes with software based error detection (OMAP_ECC_BCH4_CODE_HW_DETECTION_SW). - most of AM33xx SoC plaforms use 8-bit BCH ecc-scheme for now, but hardware supports BCH16 ecc-scheme also. 2) Different platforms use different CONFIG_xx to select ecc-schemes, which adds confusion for user while migrating platforms. - *CONFIG_NAND_OMAP_ELM* which enables ELM hardware engine, selects only 8-bit BCH ecc-scheme with h/w based error-correction (OMAP_ECC_BCH8_CODE_HW) whereas ELM hardware engine supports other ecc-schemes also like; BCH4, and BCH16 (in future). - *CONFIG_NAND_OMAP_BCH8* selects 8-bit BCH ecc-scheme with s/w based error correction (OMAP_ECC_BCH8_CODE_HW_DETECTION_SW). - *CONFIG_SPL_NAND_SOFTECC* selects 1-bit Hamming ecc-scheme using s/w library Thus adding new *CONFIG_NAND_OMAP_ECCSCHEME* de-couples ecc-scheme dependency on SoC platform and NAND driver. And user can select ecc-scheme independently foreach board. However, selection some hardware based ecc-schemes (OMAP_ECC_BCHx_CODE_HW) still depends on presence of ELM hardware engine on SoC. (Refer doc/README.nand) Signed-off-by: Pekon Gupta <pekon@ti.com>
11 years ago
CONFIG_NAND_OMAP_ECCSCHEME
On OMAP platforms, this CONFIG specifies NAND ECC scheme.
It can take following values:
OMAP_ECC_HAM1_CODE_SW
1-bit Hamming code using software lib.
(for legacy devices only)
OMAP_ECC_HAM1_CODE_HW
1-bit Hamming code using GPMC hardware.
(for legacy devices only)
OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
4-bit BCH code (unsupported)
OMAP_ECC_BCH4_CODE_HW
4-bit BCH code (unsupported)
OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
8-bit BCH code with
- ecc calculation using GPMC hardware engine,
- error detection using software library.
- requires CONFIG_BCH to enable software BCH library
(For legacy device which do not have ELM h/w engine)
OMAP_ECC_BCH8_CODE_HW
8-bit BCH code with
- ecc calculation using GPMC hardware engine,
- error detection using ELM hardware engine.
OMAP_ECC_BCH16_CODE_HW
16-bit BCH code with
- ecc calculation using GPMC hardware engine,
- error detection using ELM hardware engine.
How to select ECC scheme on OMAP and AMxx platforms ?
-----------------------------------------------------
Though higher ECC schemes have more capability to detect and correct
bit-flips, but still selection of ECC scheme is dependent on following
- hardware engines present in SoC.
Some legacy OMAP SoC do not have ELM h/w engine thus such
SoC cannot support BCHx_HW ECC schemes.
- size of OOB/Spare region
With higher ECC schemes, more OOB/Spare area is required to
store ECC. So choice of ECC scheme is limited by NAND oobsize.
In general following expression can help:
NAND_OOBSIZE >= 2 + (NAND_PAGESIZE / 512) * ECC_BYTES
where
NAND_OOBSIZE = number of bytes available in
OOB/spare area per NAND page.
NAND_PAGESIZE = bytes in main-area of NAND page.
ECC_BYTES = number of ECC bytes generated to
protect 512 bytes of data, which is:
3 for HAM1_xx ecc schemes
7 for BCH4_xx ecc schemes
14 for BCH8_xx ecc schemes
26 for BCH16_xx ecc schemes
example to check for BCH16 on 2K page NAND
NAND_PAGESIZE = 2048
NAND_OOBSIZE = 64
2 + (2048 / 512) * 26 = 106 > NAND_OOBSIZE
Thus BCH16 cannot be supported on 2K page NAND.
However, for 4K pagesize NAND
NAND_PAGESIZE = 4096
NAND_OOBSIZE = 224
ECC_BYTES = 26
2 + (4096 / 512) * 26 = 210 < NAND_OOBSIZE
Thus BCH16 can be supported on 4K page NAND.
CONFIG_NAND_OMAP_GPMC_PREFETCH
On OMAP platforms that use the GPMC controller
(CONFIG_NAND_OMAP_GPMC_PREFETCH), this options enables the code that
uses the prefetch mode to speed up read operations.
NOTE:
=====
The Disk On Chip driver is currently broken and has been for some time.
There is a driver in drivers/mtd/nand, taken from Linux, that works with
the current NAND system but has not yet been adapted to the u-boot
environment.
Additional improvements to the NAND subsystem by Guido Classen, 10-10-2006
JFFS2 related commands:
implement "nand erase clean" and old "nand erase"
using both the new code which is able to skip bad blocks
"nand erase clean" additionally writes JFFS2-cleanmarkers in the oob.
Miscellaneous and testing commands:
"markbad [offset]"
create an artificial bad block (for testing bad block handling)
"scrub [offset length]"
like "erase" but don't skip bad block. Instead erase them.
DANGEROUS!!! Factory set bad blocks will be lost. Use only
to remove artificial bad blocks created with the "markbad" command.
"torture offset [size]"
Torture block to determine if it is still reliable.
Enabled by the CONFIG_CMD_NAND_TORTURE configuration option.
This command returns 0 if the block is still reliable, else 1.
If the block is detected as unreliable, it is up to the user to decide to
mark this block as bad.
The analyzed block is put through 3 erase / write cycles (or less if the block
is detected as unreliable earlier).
This command can be used in scripts, e.g. together with the markbad command to
automate retries and handling of possibly newly detected bad blocks if the
nand write command fails.
It can also be used manually by users having seen some NAND errors in logs to
search the root cause of these errors.
The underlying nand_torture() function is also useful for code willing to
automate actions following a nand->write() error. This would e.g. be required
in order to program or update safely firmware to NAND, especially for the UBI
part of such firmware.
Optionally, a second parameter size can be given to test multiple blocks with
one call. If size is not a multiple of the NAND's erase size, then the block
that contains offset + size will be tested in full. If used with size, this
command returns 0 if all tested blocks have been found reliable, else 1.
NAND locking command (for chips with active LOCKPRE pin)
"nand lock"
set NAND chip to lock state (all pages locked)
"nand lock tight"
set NAND chip to lock tight state (software can't change locking anymore)
"nand lock status"
displays current locking status of all pages
"nand unlock [offset] [size]"
unlock consecutive area (can be called multiple times for different areas)
"nand unlock.allexcept [offset] [size]"
unlock all except specified consecutive area
I have tested the code with board containing 128MiB NAND large page chips
and 32MiB small page chips.