upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/cpu/ppc4xx/spd_sdram.c

1762 lines
52 KiB

22 years ago
/*
* (C) Copyright 2001
* Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
*
* Based on code by:
*
* Kenneth Johansson ,Ericsson AB.
* kenneth.johansson@etx.ericsson.se
22 years ago
*
* hacked up by bill hunter. fixed so we could run before
* serial_init and console_init. previous version avoided this by
* running out of cache memory during serial/console init, then running
* this code later.
*
* (C) Copyright 2002
* Jun Gu, Artesyn Technology, jung@artesyncp.com
* Support for IBM 440 based on OpenBIOS draminit.c from IBM.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <ppc4xx.h>
#ifdef CONFIG_SPD_EEPROM
/*
* Set default values
*/
#ifndef CFG_I2C_SPEED
#define CFG_I2C_SPEED 50000
#endif
#ifndef CFG_I2C_SLAVE
#define CFG_I2C_SLAVE 0xFE
#endif
#ifndef CONFIG_440 /* for 405 WALNUT board */
#define SDRAM0_CFG_DCE 0x80000000
#define SDRAM0_CFG_SRE 0x40000000
#define SDRAM0_CFG_PME 0x20000000
#define SDRAM0_CFG_MEMCHK 0x10000000
#define SDRAM0_CFG_REGEN 0x08000000
#define SDRAM0_CFG_ECCDD 0x00400000
#define SDRAM0_CFG_EMDULR 0x00200000
#define SDRAM0_CFG_DRW_SHIFT (31-6)
#define SDRAM0_CFG_BRPF_SHIFT (31-8)
#define SDRAM0_TR_CASL_SHIFT (31-8)
#define SDRAM0_TR_PTA_SHIFT (31-13)
#define SDRAM0_TR_CTP_SHIFT (31-15)
#define SDRAM0_TR_LDF_SHIFT (31-17)
#define SDRAM0_TR_RFTA_SHIFT (31-29)
#define SDRAM0_TR_RCD_SHIFT (31-31)
#define SDRAM0_RTR_SHIFT (31-15)
#define SDRAM0_ECCCFG_SHIFT (31-11)
/* SDRAM0_CFG enable macro */
#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )
#define SDRAM0_BXCR_SZ_MASK 0x000e0000
#define SDRAM0_BXCR_AM_MASK 0x0000e000
#define SDRAM0_BXCR_SZ_SHIFT (31-14)
#define SDRAM0_BXCR_AM_SHIFT (31-18)
#define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
#define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )
#ifdef CONFIG_SPDDRAM_SILENT
22 years ago
# define SPD_ERR(x) do { return 0; } while (0)
#else
# define SPD_ERR(x) do { printf(x); return(0); } while (0)
22 years ago
#endif
#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
/* function prototypes */
int spd_read(uint addr);
22 years ago
/*
* This function is reading data from the DIMM module EEPROM over the SPD bus
* and uses that to program the sdram controller.
*
* This works on boards that has the same schematics that the IBM walnut has.
*
* Input: null for default I2C spd functions or a pointer to a custom function
* returning spd_data.
22 years ago
*/
long int spd_sdram(int(read_spd)(uint addr))
22 years ago
{
int bus_period,tmp,row,col;
int total_size,bank_size,bank_code;
int ecc_on;
int mode;
int bank_cnt;
22 years ago
int sdram0_pmit=0x07c00000;
int sdram0_besr0=-1;
int sdram0_besr1=-1;
int sdram0_eccesr=-1;
int sdram0_ecccfg;
int sdram0_rtr=0;
int sdram0_tr=0;
int sdram0_b0cr;
int sdram0_b1cr;
int sdram0_b2cr;
int sdram0_b3cr;
int sdram0_cfg=0;
int t_rp;
int t_rcd;
int t_ras;
int t_rc;
int min_cas;
22 years ago
if(read_spd == 0){
read_spd=spd_read;
22 years ago
/*
* Make sure I2C controller is initialized
* before continuing.
*/
i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
}
22 years ago
/*
* Calculate the bus period, we do it this
* way to minimize stack utilization.
*/
tmp = (mfdcr(pllmd) >> (31-6)) & 0xf; /* get FBDV bits */
tmp = CONFIG_SYS_CLK_FREQ * tmp; /* get plb freq */
bus_period = sdram_HZ_to_ns(tmp); /* get sdram speed */
/* Make shure we are using SDRAM */
if (read_spd(2) != 0x04){
22 years ago
SPD_ERR("SDRAM - non SDRAM memory module found\n");
}
/*------------------------------------------------------------------
configure memory timing register
data from DIMM:
27 IN Row Precharge Time ( t RP)
29 MIN RAS to CAS Delay ( t RCD)
127 Component and Clock Detail ,clk0-clk3, junction temp, CAS
-------------------------------------------------------------------*/
/*
* first figure out which cas latency mode to use
* use the min supported mode
*/
tmp = read_spd(127) & 0x6;
22 years ago
if(tmp == 0x02){ /* only cas = 2 supported */
min_cas = 2;
/* t_ck = read_spd(9); */
/* t_ac = read_spd(10); */
22 years ago
}
else if (tmp == 0x04){ /* only cas = 3 supported */
min_cas = 3;
/* t_ck = read_spd(9); */
/* t_ac = read_spd(10); */
22 years ago
}
else if (tmp == 0x06){ /* 2,3 supported, so use 2 */
min_cas = 2;
/* t_ck = read_spd(23); */
/* t_ac = read_spd(24); */
22 years ago
}
else {
SPD_ERR("SDRAM - unsupported CAS latency \n");
}
/* get some timing values, t_rp,t_rcd,t_ras,t_rc
22 years ago
*/
t_rp = read_spd(27);
t_rcd = read_spd(29);
t_ras = read_spd(30);
t_rc = t_ras + t_rp;
22 years ago
/* The following timing calcs subtract 1 before deviding.
* this has effect of using ceiling instead of floor rounding,
22 years ago
* and also subtracting 1 to convert number to reg value
*/
/* set up CASL */
sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
/* set up PTA */
sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT;
/* set up CTP */
tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3;
if(tmp<1) tmp=1;
22 years ago
sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
/* set LDF = 2 cycles, reg value = 1 */
sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
/* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
tmp = ( (t_rc - 1) / bus_period)-3;
22 years ago
if(tmp<0)tmp=0;
if(tmp>6)tmp=6;
sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
/* set RCD = t_rcd/bus_period*/
sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ;
/*------------------------------------------------------------------
configure RTR register
-------------------------------------------------------------------*/
row = read_spd(3);
col = read_spd(4);
tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
22 years ago
switch(tmp){
case 0x00:
tmp=15625;
break;
case 0x01:
tmp=15625/4;
break;
case 0x02:
tmp=15625/2;
break;
case 0x03:
tmp=15625*2;
break;
case 0x04:
tmp=15625*4;
break;
case 0x05:
tmp=15625*8;
break;
default:
SPD_ERR("SDRAM - Bad refresh period \n");
}
/* convert from nsec to bus cycles */
tmp = tmp/bus_period;
sdram0_rtr = (tmp & 0x3ff8)<< SDRAM0_RTR_SHIFT;
/*------------------------------------------------------------------
determine the number of banks used
-------------------------------------------------------------------*/
/* byte 7:6 is module data width */
if(read_spd(7) != 0)
22 years ago
SPD_ERR("SDRAM - unsupported module width\n");
tmp = read_spd(6);
22 years ago
if (tmp < 32)
SPD_ERR("SDRAM - unsupported module width\n");
else if (tmp < 64)
bank_cnt=1; /* one bank per sdram side */
else if (tmp < 73)
bank_cnt=2; /* need two banks per side */
else if (tmp < 161)
bank_cnt=4; /* need four banks per side */
else
SPD_ERR("SDRAM - unsupported module width\n");
/* byte 5 is the module row count (refered to as dimm "sides") */
tmp = read_spd(5);
22 years ago
if(tmp==1);
else if(tmp==2) bank_cnt *=2;
else if(tmp==4) bank_cnt *=4;
else bank_cnt = 8; /* 8 is an error code */
if(bank_cnt > 4) /* we only have 4 banks to work with */
SPD_ERR("SDRAM - unsupported module rows for this width\n");
/* now check for ECC ability of module. We only support ECC
* on 32 bit wide devices with 8 bit ECC.
*/
if ( (read_spd(11)==2) && ((read_spd(6)==40) || (read_spd(14)==8)) ){
22 years ago
sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT;
ecc_on = 1;
}
else{
sdram0_ecccfg=0;
ecc_on = 0;
}
/*------------------------------------------------------------------
calculate total size
-------------------------------------------------------------------*/
/* calculate total size and do sanity check */
tmp = read_spd(31);
22 years ago
total_size=1<<22; /* total_size = 4MB */
/* now multiply 4M by the smallest device row density */
22 years ago
/* note that we don't support asymetric rows */
while (((tmp & 0x0001) == 0) && (tmp != 0)){
total_size= total_size<<1;
tmp = tmp>>1;
}
total_size *= read_spd(5); /* mult by module rows (dimm sides) */
22 years ago
/*------------------------------------------------------------------
map rows * cols * banks to a mode
-------------------------------------------------------------------*/
switch( row )
{
case 11:
switch ( col )
{
case 8:
mode=4; /* mode 5 */
break;
case 9:
case 10:
mode=0; /* mode 1 */
break;
default:
SPD_ERR("SDRAM - unsupported mode\n");
}
break;
case 12:
switch ( col )
{
case 8:
mode=3; /* mode 4 */
break;
case 9:
case 10:
mode=1; /* mode 2 */
break;
default:
SPD_ERR("SDRAM - unsupported mode\n");
}
break;
case 13:
switch ( col )
{
case 8:
mode=5; /* mode 6 */
break;
case 9:
case 10:
if (read_spd(17) ==2 )
22 years ago
mode=6; /* mode 7 */
else
mode=2; /* mode 3 */
break;
case 11:
mode=2; /* mode 3 */
break;
default:
SPD_ERR("SDRAM - unsupported mode\n");
}
break;
default:
SPD_ERR("SDRAM - unsupported mode\n");
}
/*------------------------------------------------------------------
using the calculated values, compute the bank
config register values.
-------------------------------------------------------------------*/
sdram0_b1cr = 0;
sdram0_b2cr = 0;
sdram0_b3cr = 0;
/* compute the size of each bank */
bank_size = total_size / bank_cnt;
/* convert bank size to bank size code for ppc4xx
by takeing log2(bank_size) - 22 */
tmp=bank_size; /* start with tmp = bank_size */
bank_code=0; /* and bank_code = 0 */
while (tmp>1){ /* this takes log2 of tmp */
bank_code++; /* and stores result in bank_code */
tmp=tmp>>1;
} /* bank_code is now log2(bank_size) */
bank_code-=22; /* subtract 22 to get the code */
tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
sdram0_b0cr = (bank_size) * 0 | tmp;
if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp;
if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp;
if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp;
/*
* enable sdram controller DCE=1
* enable burst read prefetch to 32 bytes BRPF=2
* leave other functions off
*/
/*------------------------------------------------------------------
now that we've done our calculations, we are ready to
program all the registers.
-------------------------------------------------------------------*/
#define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data)
/* disable memcontroller so updates work */
sdram0_cfg = 0;
mtsdram0( mem_mcopt1, sdram0_cfg );
mtsdram0( mem_besra , sdram0_besr0 );
mtsdram0( mem_besrb , sdram0_besr1 );
mtsdram0( mem_rtr , sdram0_rtr );
mtsdram0( mem_pmit , sdram0_pmit );
mtsdram0( mem_mb0cf , sdram0_b0cr );
mtsdram0( mem_mb1cf , sdram0_b1cr );
mtsdram0( mem_mb2cf , sdram0_b2cr );
mtsdram0( mem_mb3cf , sdram0_b3cr );
mtsdram0( mem_sdtr1 , sdram0_tr );
mtsdram0( mem_ecccf , sdram0_ecccfg );
mtsdram0( mem_eccerr, sdram0_eccesr );
/* SDRAM have a power on delay, 500 micro should do */
udelay(500);
sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK;
mtsdram0( mem_mcopt1, sdram0_cfg );
/* kernel 2.4.2 from mvista has a bug with memory over 128MB */
#ifdef MVISTA_MEM_BUG
if (total_size > 128*1024*1024 )
total_size=128*1024*1024;
#endif
return (total_size);
}
int spd_read(uint addr)
{
char data[2];
if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
return (int)data[0];
else
return 0;
}
#else /* CONFIG_440 */
/*-----------------------------------------------------------------------------
| Memory Controller Options 0
+-----------------------------------------------------------------------------*/
#define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */
#define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */
#define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */
#define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */
#define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */
#define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */
#define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */
#define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */
#define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */
#define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */
#define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */
#define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */
/*-----------------------------------------------------------------------------
| Memory Controller Options 1
+-----------------------------------------------------------------------------*/
#define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */
#define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */
/*-----------------------------------------------------------------------------+
| SDRAM DEVPOT Options
+-----------------------------------------------------------------------------*/
#define SDRAM_DEVOPT_DLL 0x80000000
#define SDRAM_DEVOPT_DS 0x40000000
/*-----------------------------------------------------------------------------+
| SDRAM MCSTS Options
+-----------------------------------------------------------------------------*/
#define SDRAM_MCSTS_MRSC 0x80000000
#define SDRAM_MCSTS_SRMS 0x40000000
#define SDRAM_MCSTS_CIS 0x20000000
/*-----------------------------------------------------------------------------
| SDRAM Refresh Timer Register
+-----------------------------------------------------------------------------*/
#define SDRAM_RTR_RINT_MASK 0xFFFF0000
#define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK)
#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))
/*-----------------------------------------------------------------------------+
| SDRAM UABus Base Address Reg
+-----------------------------------------------------------------------------*/
#define SDRAM_UABBA_UBBA_MASK 0x0000000F
/*-----------------------------------------------------------------------------+
| Memory Bank 0-7 configuration
+-----------------------------------------------------------------------------*/
#define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */
#define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */
#define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */
#define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */
#define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */
#define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */
#define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */
#define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */
#define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */
#define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */
#define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */
#define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */
#define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */
#define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */
#define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */
/*-----------------------------------------------------------------------------+
| SDRAM TR0 Options
+-----------------------------------------------------------------------------*/
#define SDRAM_TR0_SDWR_MASK 0x80000000
#define SDRAM_TR0_SDWR_2_CLK 0x00000000
#define SDRAM_TR0_SDWR_3_CLK 0x80000000
#define SDRAM_TR0_SDWD_MASK 0x40000000
#define SDRAM_TR0_SDWD_0_CLK 0x00000000
#define SDRAM_TR0_SDWD_1_CLK 0x40000000
#define SDRAM_TR0_SDCL_MASK 0x01800000
#define SDRAM_TR0_SDCL_2_0_CLK 0x00800000
#define SDRAM_TR0_SDCL_2_5_CLK 0x01000000
#define SDRAM_TR0_SDCL_3_0_CLK 0x01800000
#define SDRAM_TR0_SDPA_MASK 0x000C0000
#define SDRAM_TR0_SDPA_2_CLK 0x00040000
#define SDRAM_TR0_SDPA_3_CLK 0x00080000
#define SDRAM_TR0_SDPA_4_CLK 0x000C0000
#define SDRAM_TR0_SDCP_MASK 0x00030000
#define SDRAM_TR0_SDCP_2_CLK 0x00000000
#define SDRAM_TR0_SDCP_3_CLK 0x00010000
#define SDRAM_TR0_SDCP_4_CLK 0x00020000
#define SDRAM_TR0_SDCP_5_CLK 0x00030000
#define SDRAM_TR0_SDLD_MASK 0x0000C000
#define SDRAM_TR0_SDLD_1_CLK 0x00000000
#define SDRAM_TR0_SDLD_2_CLK 0x00004000
#define SDRAM_TR0_SDRA_MASK 0x0000001C
#define SDRAM_TR0_SDRA_6_CLK 0x00000000
#define SDRAM_TR0_SDRA_7_CLK 0x00000004
#define SDRAM_TR0_SDRA_8_CLK 0x00000008
#define SDRAM_TR0_SDRA_9_CLK 0x0000000C
#define SDRAM_TR0_SDRA_10_CLK 0x00000010
#define SDRAM_TR0_SDRA_11_CLK 0x00000014
#define SDRAM_TR0_SDRA_12_CLK 0x00000018
#define SDRAM_TR0_SDRA_13_CLK 0x0000001C
#define SDRAM_TR0_SDRD_MASK 0x00000003
#define SDRAM_TR0_SDRD_2_CLK 0x00000001
#define SDRAM_TR0_SDRD_3_CLK 0x00000002
#define SDRAM_TR0_SDRD_4_CLK 0x00000003
/*-----------------------------------------------------------------------------+
| SDRAM TR1 Options
+-----------------------------------------------------------------------------*/
#define SDRAM_TR1_RDSS_MASK 0xC0000000
#define SDRAM_TR1_RDSS_TR0 0x00000000
#define SDRAM_TR1_RDSS_TR1 0x40000000
#define SDRAM_TR1_RDSS_TR2 0x80000000
#define SDRAM_TR1_RDSS_TR3 0xC0000000
#define SDRAM_TR1_RDSL_MASK 0x00C00000
#define SDRAM_TR1_RDSL_STAGE1 0x00000000
#define SDRAM_TR1_RDSL_STAGE2 0x00400000
#define SDRAM_TR1_RDSL_STAGE3 0x00800000
#define SDRAM_TR1_RDCD_MASK 0x00000800
#define SDRAM_TR1_RDCD_RCD_0_0 0x00000000
#define SDRAM_TR1_RDCD_RCD_1_2 0x00000800
#define SDRAM_TR1_RDCT_MASK 0x000001FF
#define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK)
#define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0)
#define SDRAM_TR1_RDCT_MIN 0x00000000
#define SDRAM_TR1_RDCT_MAX 0x000001FF
/*-----------------------------------------------------------------------------+
| SDRAM WDDCTR Options
+-----------------------------------------------------------------------------*/
#define SDRAM_WDDCTR_WRCP_MASK 0xC0000000
#define SDRAM_WDDCTR_WRCP_0DEG 0x00000000
#define SDRAM_WDDCTR_WRCP_90DEG 0x40000000
#define SDRAM_WDDCTR_WRCP_180DEG 0x80000000
#define SDRAM_WDDCTR_DCD_MASK 0x000001FF
/*-----------------------------------------------------------------------------+
| SDRAM CLKTR Options
+-----------------------------------------------------------------------------*/
#define SDRAM_CLKTR_CLKP_MASK 0xC0000000
#define SDRAM_CLKTR_CLKP_0DEG 0x00000000
#define SDRAM_CLKTR_CLKP_90DEG 0x40000000
#define SDRAM_CLKTR_CLKP_180DEG 0x80000000
#define SDRAM_CLKTR_DCDT_MASK 0x000001FF
/*-----------------------------------------------------------------------------+
| SDRAM DLYCAL Options
+-----------------------------------------------------------------------------*/
#define SDRAM_DLYCAL_DLCV_MASK 0x000003FC
#define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK)
#define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2)
/*-----------------------------------------------------------------------------+
| General Definition
+-----------------------------------------------------------------------------*/
#define DEFAULT_SPD_ADDR1 0x53
#define DEFAULT_SPD_ADDR2 0x52
#define ONE_BILLION 1000000000
#define MAXBANKS 4 /* at most 4 dimm banks */
#define MAX_SPD_BYTES 256
#define NUMHALFCYCLES 4
#define NUMMEMTESTS 8
#define NUMMEMWORDS 8
#define MAXBXCR 4
#define TRUE 1
#define FALSE 0
const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
0xFFFFFFFF, 0xFFFFFFFF},
{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
0x00000000, 0x00000000},
{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
0x55555555, 0x55555555},
{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
0xAAAAAAAA, 0xAAAAAAAA},
{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
0x5A5A5A5A, 0x5A5A5A5A},
{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
0xA5A5A5A5, 0xA5A5A5A5},
{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
0x55AA55AA, 0x55AA55AA},
{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
0xAA55AA55, 0xAA55AA55}
};
unsigned char spd_read(uchar chip, uint addr);
void get_spd_info(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void check_mem_type
(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void check_volt_type
(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void program_cfg0(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void program_cfg1(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void program_rtr (unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void program_tr0 (unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
void program_tr1 (void);
void program_ecc (unsigned long num_bytes);
unsigned
long program_bxcr(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks);
/*
* This function is reading data from the DIMM module EEPROM over the SPD bus
* and uses that to program the sdram controller.
*
* This works on boards that has the same schematics that the IBM walnut has.
*
* BUG: Don't handle ECC memory
* BUG: A few values in the TR register is currently hardcoded
*/
long int spd_sdram(void) {
unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
unsigned long total_size;
unsigned long cfg0;
unsigned long mcsts;
unsigned long num_dimm_banks; /* on board dimm banks */
num_dimm_banks = sizeof(iic0_dimm_addr);
/*
* Make sure I2C controller is initialized
* before continuing.
*/
i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
/*
* Read the SPD information using I2C interface. Check to see if the
* DIMM slots are populated.
*/
get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the memory type for the dimms plugged.
*/
check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* Check the voltage type for the dimms plugged.
*/
check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program 440GP SDRAM controller options (SDRAM0_CFG0)
*/
program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program 440GP SDRAM controller options (SDRAM0_CFG1)
*/
program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM refresh register (SDRAM0_RTR)
*/
program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program SDRAM Timing Register 0 (SDRAM0_TR0)
*/
program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);
/*
* program the BxCR registers to find out total sdram installed
*/
total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
num_dimm_banks);
/*
* program SDRAM Clock Timing Register (SDRAM0_CLKTR)
*/
mtsdram(mem_clktr, 0x40000000);
/*
* delay to ensure 200 usec has elapsed
*/
udelay(400);
/*
* enable the memory controller
*/
mfsdram(mem_cfg0, cfg0);
mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);
/*
* wait for SDRAM_CFG0_DC_EN to complete
*/
while(1) {
mfsdram(mem_mcsts, mcsts);
if ((mcsts & SDRAM_MCSTS_MRSC) != 0) {
break;
}
}
/*
* program SDRAM Timing Register 1, adding some delays
*/
program_tr1();
/*
* if ECC is enabled, initialize parity bits
*/
return total_size;
}
unsigned char spd_read(uchar chip, uint addr) {
unsigned char data[2];
if (i2c_read(chip, addr, 1, data, 1) == 0)
return data[0];
else
return 0;
}
void get_spd_info(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found;
unsigned char num_of_bytes;
unsigned char total_size;
dimm_found = FALSE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
if ((num_of_bytes != 0) && (total_size != 0)) {
dimm_populated[dimm_num] = TRUE;
dimm_found = TRUE;
#if 0
printf("DIMM slot %lu: populated\n", dimm_num);
#endif
}
else {
dimm_populated[dimm_num] = FALSE;
#if 0
printf("DIMM slot %lu: Not populated\n", dimm_num);
#endif
}
}
if (dimm_found == FALSE) {
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
hang();
}
}
void check_mem_type(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned char dimm_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
switch (dimm_type) {
case 7:
#if 0
printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
#endif
break;
default:
printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
dimm_num);
printf("Only DDR SDRAM DIMMs are supported.\n");
printf("Replace the DIMM module with a supported DIMM.\n\n");
hang();
break;
}
}
}
}
void check_volt_type(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
if (voltage_type != 0x04) {
printf("ERROR: DIMM %lu with unsupported voltage level.\n",
dimm_num);
hang();
}
else {
#if 0
printf("DIMM %lu voltage level supported.\n", dimm_num);
#endif
}
break;
}
}
}
void program_cfg0(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long cfg0;
unsigned long ecc_enabled;
unsigned char ecc;
unsigned char attributes;
unsigned long data_width;
unsigned long dimm_32bit;
unsigned long dimm_64bit;
/*
* get Memory Controller Options 0 data
*/
mfsdram(mem_cfg0, cfg0);
/*
* clear bits
*/
cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
SDRAM_CFG0_DMWD_MASK |
SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);
/*
* FIXME: assume the DDR SDRAMs in both banks are the same
*/
ecc_enabled = TRUE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
if (ecc != 0x02) {
ecc_enabled = FALSE;
}
/*
* program Registered DIMM Enable
*/
attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
if ((attributes & 0x02) != 0x00) {
cfg0 |= SDRAM_CFG0_RDEN;
}
/*
* program DDR SDRAM Data Width
*/
data_width =
(unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
(((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
if (data_width == 64 || data_width == 72) {
dimm_64bit = TRUE;
cfg0 |= SDRAM_CFG0_DMWD_64;
}
else if (data_width == 32 || data_width == 40) {
dimm_32bit = TRUE;
cfg0 |= SDRAM_CFG0_DMWD_32;
}
else {
printf("WARNING: DIMM with datawidth of %lu bits.\n",
data_width);
printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
hang();
}
break;
}
}
/*
* program Memory Data Error Checking
*/
if (ecc_enabled == TRUE) {
cfg0 |= SDRAM_CFG0_MCHK_GEN;
}
else {
cfg0 |= SDRAM_CFG0_MCHK_NON;
}
/*
* program Page Management Unit
*/
cfg0 |= SDRAM_CFG0_PMUD;
/*
* program Memory Controller Options 0
* Note: DCEN must be enabled after all DDR SDRAM controller
* configuration registers get initialized.
*/
mtsdram(mem_cfg0, cfg0);
}
void program_cfg1(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long cfg1;
mfsdram(mem_cfg1, cfg1);
/*
* Self-refresh exit, disable PM
*/
cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);
/*
* program Memory Controller Options 1
*/
mtsdram(mem_cfg1, cfg1);
}
void program_rtr (unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bus_period_x_10;
unsigned long refresh_rate = 0;
unsigned char refresh_rate_type;
unsigned long refresh_interval;
unsigned long sdram_rtr;
PPC440_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
switch (refresh_rate_type) {
case 0x00:
refresh_rate = 15625;
break;
case 0x011:
refresh_rate = 15625/4;
break;
case 0x02:
refresh_rate = 15625/2;
break;
case 0x03:
refresh_rate = 15626*2;
break;
case 0x04:
refresh_rate = 15625*4;
break;
case 0x05:
refresh_rate = 15625*8;
break;
default:
printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
dimm_num);
printf("Replace the DIMM module with a supported DIMM.\n");
break;
}
break;
}
}
refresh_interval = refresh_rate * 10 / bus_period_x_10;
sdram_rtr = (refresh_interval & 0x3ff8) << 16;
/*
* program Refresh Timer Register (SDRAM0_RTR)
*/
mtsdram(mem_rtr, sdram_rtr);
}
void program_tr0 (unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long tr0;
unsigned char wcsbc;
unsigned char t_rp_ns;
unsigned char t_rcd_ns;
unsigned char t_ras_ns;
unsigned long t_rp_clk;
unsigned long t_ras_rcd_clk;
unsigned long t_rcd_clk;
unsigned long t_rfc_clk;
unsigned long plb_check;
unsigned char cas_bit;
unsigned long cas_index;
unsigned char cas_2_0_available;
unsigned char cas_2_5_available;
unsigned char cas_3_0_available;
unsigned long cycle_time_ns_x_10[3];
unsigned long tcyc_3_0_ns_x_10;
unsigned long tcyc_2_5_ns_x_10;
unsigned long tcyc_2_0_ns_x_10;
unsigned long tcyc_reg;
unsigned long bus_period_x_10;
PPC440_SYS_INFO sys_info;
unsigned long residue;
/*
* get the board info
*/
get_sys_info(&sys_info);
bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(mem_tr0, tr0);
tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);
/*
* initialization
*/
wcsbc = 0;
t_rp_ns = 0;
t_rcd_ns = 0;
t_ras_ns = 0;
cas_2_0_available = TRUE;
cas_2_5_available = TRUE;
cas_3_0_available = TRUE;
tcyc_2_0_ns_x_10 = 0;
tcyc_2_5_ns_x_10 = 0;
tcyc_3_0_ns_x_10 = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
for (cas_index = 0; cas_index < 3; cas_index++) {
switch (cas_index) {
case 0:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
break;
case 1:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
break;
default:
tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
break;
}
if ((tcyc_reg & 0x0F) >= 10) {
printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
dimm_num);
hang();
}
cycle_time_ns_x_10[cas_index] =
(((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
}
cas_index = 0;
if ((cas_bit & 0x80) != 0) {
cas_index += 3;
}
else if ((cas_bit & 0x40) != 0) {
cas_index += 2;
}
else if ((cas_bit & 0x20) != 0) {
cas_index += 1;
}
if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
}
else {
if (cas_index != 0) {
cas_index++;
}
cas_3_0_available = FALSE;
}
if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
}
else {
if (cas_index != 0) {
cas_index++;
}
cas_2_5_available = FALSE;
}
if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
cas_index++;
}
else {
if (cas_index != 0) {
cas_index++;
}
cas_2_0_available = FALSE;
}
break;
}
}
/*
* Program SD_WR and SD_WCSBC fields
*/
tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */
switch (wcsbc) {
case 0:
tr0 |= SDRAM_TR0_SDWD_0_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDWD_1_CLK;
break;
}
/*
* Program SD_CASL field
*/
if ((cas_2_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
}
else if((cas_2_5_available == TRUE) &&
(bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
}
else if((cas_3_0_available == TRUE) &&
(bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
}
else {
printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range.\n");
hang();
}
/*
* Calculate Trp in clock cycles and round up if necessary
* Program SD_PTA field
*/
t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
if (sys_info.freqPLB != plb_check) {
t_rp_clk++;
}
switch ((unsigned long)t_rp_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDPA_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDPA_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDPA_4_CLK;
break;
}
/*
* Program SD_CTP field
*/
t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
if (sys_info.freqPLB != plb_check) {
t_ras_rcd_clk++;
}
switch (t_ras_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDCP_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDCP_3_CLK;
break;
case 4:
tr0 |= SDRAM_TR0_SDCP_4_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDCP_5_CLK;
break;
}
/*
* Program SD_LDF field
*/
tr0 |= SDRAM_TR0_SDLD_2_CLK;
/*
* Program SD_RFTA field
* FIXME tRFC hardcoded as 75 nanoseconds
*/
t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
residue = sys_info.freqPLB % (ONE_BILLION / 75);
if (residue >= (ONE_BILLION / 150)) {
t_rfc_clk++;
}
switch (t_rfc_clk) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
tr0 |= SDRAM_TR0_SDRA_6_CLK;
break;
case 7:
tr0 |= SDRAM_TR0_SDRA_7_CLK;
break;
case 8:
tr0 |= SDRAM_TR0_SDRA_8_CLK;
break;
case 9:
tr0 |= SDRAM_TR0_SDRA_9_CLK;
break;
case 10:
tr0 |= SDRAM_TR0_SDRA_10_CLK;
break;
case 11:
tr0 |= SDRAM_TR0_SDRA_11_CLK;
break;
case 12:
tr0 |= SDRAM_TR0_SDRA_12_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRA_13_CLK;
break;
}
/*
* Program SD_RCD field
*/
t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
if (sys_info.freqPLB != plb_check) {
t_rcd_clk++;
}
switch (t_rcd_clk) {
case 0:
case 1:
case 2:
tr0 |= SDRAM_TR0_SDRD_2_CLK;
break;
case 3:
tr0 |= SDRAM_TR0_SDRD_3_CLK;
break;
default:
tr0 |= SDRAM_TR0_SDRD_4_CLK;
break;
}
#if 0
printf("tr0: %x\n", tr0);
#endif
mtsdram(mem_tr0, tr0);
}
void program_tr1 (void)
{
unsigned long tr0;
unsigned long tr1;
unsigned long cfg0;
unsigned long ecc_temp;
unsigned long dlycal;
unsigned long dly_val;
unsigned long i, j, k;
unsigned long bxcr_num;
unsigned long max_pass_length;
unsigned long current_pass_length;
unsigned long current_fail_length;
unsigned long current_start;
unsigned long rdclt;
unsigned long rdclt_offset;
long max_start;
long max_end;
long rdclt_average;
unsigned char window_found;
unsigned char fail_found;
unsigned char pass_found;
unsigned long * membase;
PPC440_SYS_INFO sys_info;
/*
* get the board info
*/
get_sys_info(&sys_info);
/*
* get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
*/
mfsdram(mem_tr1, tr1);
tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);
mfsdram(mem_tr0, tr0);
if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
(sys_info.freqPLB > 100000000)) {
tr1 |= SDRAM_TR1_RDSS_TR2;
tr1 |= SDRAM_TR1_RDSL_STAGE3;
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
}
else {
tr1 |= SDRAM_TR1_RDSS_TR1;
tr1 |= SDRAM_TR1_RDSL_STAGE2;
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* save CFG0 ECC setting to a temporary variable and turn ECC off
*/
mfsdram(mem_cfg0, cfg0);
ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);
/*
* get the delay line calibration register value
*/
mfsdram(mem_dlycal, dlycal);
dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
max_pass_length = 0;
max_start = 0;
max_end = 0;
current_pass_length = 0;
current_fail_length = 0;
current_start = 0;
rdclt_offset = 0;
window_found = FALSE;
fail_found = FALSE;
pass_found = FALSE;
#ifdef DEBUG
printf("Starting memory test ");
#endif
for (k = 0; k < NUMHALFCYCLES; k++) {
for (rdclt = 0; rdclt < dly_val; rdclt++) {
/*
* Set the timing reg for the test.
*/
mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));
for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
mtdcr(memcfga, mem_b0cr + (bxcr_num<<2));
if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
/* Bank is enabled */
membase = (unsigned long*)
(mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);
/*
* Run the short memory test
*/
for (i = 0; i < NUMMEMTESTS; i++) {
for (j = 0; j < NUMMEMWORDS; j++) {
membase[j] = test[i][j];
ppcDcbf((unsigned long)&(membase[j]));
}
for (j = 0; j < NUMMEMWORDS; j++) {
if (membase[j] != test[i][j]) {
ppcDcbf((unsigned long)&(membase[j]));
break;
}
ppcDcbf((unsigned long)&(membase[j]));
}
if (j < NUMMEMWORDS) {
break;
}
}
/*
* see if the rdclt value passed
*/
if (i < NUMMEMTESTS) {
break;
}
}
}
if (bxcr_num == MAXBXCR) {
if (fail_found == TRUE) {
pass_found = TRUE;
if (current_pass_length == 0) {
current_start = rdclt_offset + rdclt;
}
current_fail_length = 0;
current_pass_length++;
if (current_pass_length > max_pass_length) {
max_pass_length = current_pass_length;
max_start = current_start;
max_end = rdclt_offset + rdclt;
}
}
}
else {
current_pass_length = 0;
current_fail_length++;
if (current_fail_length >= (dly_val>>2)) {
if (fail_found == FALSE) {
fail_found = TRUE;
}
else if (pass_found == TRUE) {
window_found = TRUE;
break;
}
}
}
}
#ifdef DEBUG
printf(".");
#endif
if (window_found == TRUE) {
break;
}
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
rdclt_offset += dly_val;
}
#ifdef DEBUG
printf("\n");
#endif
/*
* make sure we find the window
*/
if (window_found == FALSE) {
printf("ERROR: Cannot determine a common read delay.\n");
hang();
}
/*
* restore the orignal ECC setting
*/
mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);
/*
* set the SDRAM TR1 RDCD value
*/
tr1 &= ~SDRAM_TR1_RDCD_MASK;
if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
}
else {
tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
}
/*
* set the SDRAM TR1 RDCLT value
*/
tr1 &= ~SDRAM_TR1_RDCT_MASK;
while (max_end >= (dly_val<<1)) {
max_end -= (dly_val<<1);
max_start -= (dly_val<<1);
}
rdclt_average = ((max_start + max_end) >> 1);
if (rdclt_average >= 0x60)
while(1);
if (rdclt_average < 0) {
rdclt_average = 0;
}
if (rdclt_average >= dly_val) {
rdclt_average -= dly_val;
tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
}
tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);
#if 0
printf("tr1: %x\n", tr1);
#endif
/*
* program SDRAM Timing Register 1 TR1
*/
mtsdram(mem_tr1, tr1);
}
unsigned long program_bxcr(unsigned long* dimm_populated,
unsigned char* iic0_dimm_addr,
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long bxcr_num;
unsigned long bank_base_addr;
unsigned long bank_size_bytes;
unsigned long cr;
unsigned long i;
unsigned long temp;
unsigned char num_row_addr;
unsigned char num_col_addr;
unsigned char num_banks;
unsigned char bank_size_id;
/*
* Set the BxCR regs. First, wipe out the bank config registers.
*/
for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
mtdcr(memcfgd, 0x00000000);
}
/*
* reset the bank_base address
*/
bank_base_addr = CFG_SDRAM_BASE;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_populated[dimm_num] == TRUE) {
num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
num_banks = spd_read(iic0_dimm_addr[dimm_num], 5);
bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
/*
* Set the SDRAM0_BxCR regs
*/
cr = 0;
bank_size_bytes = 4 * 1024 * 1024 * bank_size_id;
switch (bank_size_id) {
case 0x02:
cr |= SDRAM_BXCR_SDSZ_8;
break;
case 0x04:
cr |= SDRAM_BXCR_SDSZ_16;
break;
case 0x08:
cr |= SDRAM_BXCR_SDSZ_32;
break;
case 0x10:
cr |= SDRAM_BXCR_SDSZ_64;
break;
case 0x20:
cr |= SDRAM_BXCR_SDSZ_128;
break;
case 0x40:
cr |= SDRAM_BXCR_SDSZ_256;
break;
case 0x80:
cr |= SDRAM_BXCR_SDSZ_512;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for the banksize: %d.\n",
bank_size_id);
printf("Replace the DIMM module with a supported DIMM.\n\n");
hang();
}
switch (num_col_addr) {
case 0x08:
cr |= SDRAM_BXCR_SDAM_1;
break;
case 0x09:
cr |= SDRAM_BXCR_SDAM_2;
break;
case 0x0A:
cr |= SDRAM_BXCR_SDAM_3;
break;
case 0x0B:
cr |= SDRAM_BXCR_SDAM_4;
break;
default:
printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
dimm_num);
printf("ERROR: Unsupported value for number of "
"column addresses: %d.\n", num_col_addr);
printf("Replace the DIMM module with a supported DIMM.\n\n");
hang();
}
/*
* enable the bank
*/
cr |= SDRAM_BXCR_SDBE;
/*------------------------------------------------------------------
| This next section is hardware dependent and must be programmed
| to match the hardware.
+-----------------------------------------------------------------*/
if (dimm_num == 0) {
for (i = 0; i < num_banks; i++) {
mtdcr(memcfga, mem_b0cr + (i << 2));
temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
SDRAM_BXCR_SDSZ_MASK |
SDRAM_BXCR_SDAM_MASK |
SDRAM_BXCR_SDBE);
cr |= temp;
cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
mtdcr(memcfgd, cr);
bank_base_addr += bank_size_bytes;
}
}
else {
for (i = 0; i < num_banks; i++) {
mtdcr(memcfga, mem_b2cr + (i << 2));
temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
SDRAM_BXCR_SDSZ_MASK |
SDRAM_BXCR_SDAM_MASK |
SDRAM_BXCR_SDBE);
cr |= temp;
cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
mtdcr(memcfgd, cr);
bank_base_addr += bank_size_bytes;
}
}
}
}
return(bank_base_addr);
}
void program_ecc (unsigned long num_bytes)
{
unsigned long bank_base_addr;
unsigned long current_address;
unsigned long end_address;
unsigned long address_increment;
unsigned long cfg0;
/*
* get Memory Controller Options 0 data
*/
mfsdram(mem_cfg0, cfg0);
/*
* reset the bank_base address
*/
bank_base_addr = CFG_SDRAM_BASE;
if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) {
mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
SDRAM_CFG0_MCHK_GEN);
if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) {
address_increment = 4;
}
else {
address_increment = 8;
}
current_address = (unsigned long)(bank_base_addr);
end_address = (unsigned long)(bank_base_addr) + num_bytes;
while (current_address < end_address) {
*((unsigned long*)current_address) = 0x00000000;
current_address += address_increment;
}
mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
SDRAM_CFG0_MCHK_CHK);
}
}
#endif /* CONFIG_440 */
#endif /* CONFIG_SPD_EEPROM */