* Patch by Robert Schwebel, 21 Jan 2003:

- Add support for Innokom board
  - Don't complain if "install" fails
  - README cleanup (remove duplicated lines)
  - Update PXA header files

* Add documentation for existing POST code (doc/README.POST)

* Patch by Laudney Ren, 15 Jan 2003:
  Fix handling of redundand environment in "tools/envcrc.c"

* Patch by Detlev Zundel, 28 Feb 2003:
  Add bedbug support for 824x systems

* Add support for 16 MB flash configuration of TRAB board

* Patch by Erwin Rol, 27 Feb 2003:
  Add support for RTEMS

* Add image information to README

* Fix dual PCMCIA slot support (when running with just one
  slot populated)

* Add VFD type detection to trab board

* extend drivers/cs8900.c driver to synchronize  ethaddr  environment
  variable with value in the EEPROM
master
wdenk 22 years ago
parent 6069ff2653
commit 43d9616cff
  1. 35
      CHANGELOG
  2. 3
      CREDITS
  3. 12
      MAINTAINERS
  4. 2
      MAKEALL
  5. 41
      Makefile
  6. 375
      README
  7. 47
      board/innokom/Makefile
  8. 16
      board/innokom/config.mk
  9. 377
      board/innokom/flash.c
  10. 139
      board/innokom/innokom.c
  11. 429
      board/innokom/memsetup.S
  12. 53
      board/innokom/u-boot.lds
  13. 262
      board/r360mpi/flash.c
  14. 2
      common/env_flash.c
  15. 5
      cpu/mpc824x/Makefile
  16. 2
      cpu/mpc824x/start.S
  17. 15
      cpu/mpc824x/traps.c
  18. 2
      cpu/xscale/Makefile
  19. 453
      cpu/xscale/i2c.c
  20. 732
      doc/README.POST
  21. 36
      include/asm-arm/arch-pxa/pxa-regs.h
  22. 359
      include/asm-arm/arch-xscale/pxa-regs.h
  23. 2
      include/asm-arm/proc-armv/ptrace.h
  24. 444
      include/configs/innokom.h
  25. 14
      include/configs/trab.h
  26. 29
      tools/envcrc.c

@ -1,7 +1,28 @@
======================================================================
Changes since U-Boot 0.2.1:
Changes since U-Boot 0.2.2:
======================================================================
* Patch by Robert Schwebel, 21 Jan 2003:
- Add support for Innokom board
- Don't complain if "install" fails
- README cleanup (remove duplicated lines)
- Update PXA header files
* Add documentation for existing POST code (doc/README.POST)
* Patch by Laudney Ren, 15 Jan 2003:
Fix handling of redundand environment in "tools/envcrc.c"
* Patch by Detlev Zundel, 28 Feb 2003:
Add bedbug support for 824x systems
* Add support for 16 MB flash configuration of TRAB board
* Patch by Erwin Rol, 27 Feb 2003:
Add support for RTEMS
* Add image information to README
* Patch by Stefan Roese, 18 Feb 2003:
CPCIISER4 configuration updated.
@ -14,9 +35,21 @@ Changes since U-Boot 0.2.1:
PCI spec 2.2 defines, that a pci target has 2^25 pci clocks after
RST# to respond to configuration cycles (33MHz -> 1s).
* Fix dual PCMCIA slot support (when running with just one
slot populated)
* Add VFD type detection to trab board
* extend drivers/cs8900.c driver to synchronize ethaddr environment
variable with value in the EEPROM
* Patch by Stefan Roese, 10 Feb 2003:
Add support for 4MB and 128MB onboard SDRAM (cpu/ppc4xx/sdram.c)
======================================================================
Changes for U-Boot 0.2.2:
======================================================================
* Add dual ethernet support on PM826
* Add support for LXT971 PHY on PM826

@ -227,7 +227,8 @@ D: FADS823 configuration, MPC823 video support, I2C, wireless keyboard, lots mor
N: Robert Schwebel
E: r.schwebel@pengutronix.de
D: Support for csb226 board (xscale)
D: Support for csb226 and innokom boards (xscale)
N: Rob Taylor
E: robt@flyingpig.com
D: Port to MBX860T and Sandpoint8240

@ -246,6 +246,7 @@ Rolf Offermanns <rof@sysgo.de>
Robert Schwebel <r.schwebel@pengutronix.de>
csb226 xscale
innokom xscale
Alex Züpke <azu@sysgo.de>
@ -264,5 +265,16 @@ Daniel Engstr
sc520_cdp x86
#########################################################################
# MIPS Systems: #
# #
# Maintainer Name, Email Address #
# Board CPU #
#########################################################################
Wolfgang Denk <wd@denx.de>
incaip MIPS32 4Kc
#########################################################################
# End of MAINTAINERS list #
#########################################################################

@ -101,7 +101,7 @@ LIST_ARM9="smdk2400 smdk2410 trab"
## Xscale Systems
#########################################################################
LIST_xscale="lubbock cradle csb226"
LIST_xscale="lubbock cradle csb226 innokom"
LIST_arm="${LIST_SA} ${LIST_ARM7} ${LIST_ARM9} ${LIST_xscale}"

@ -77,6 +77,9 @@ endif
ifeq ($(ARCH),i386)
#CROSS_COMPILE = i386-elf-
endif
ifeq ($(ARCH),mips)
CROSS_COMPILE = mips_4KC-
endif
endif
endif
@ -129,8 +132,8 @@ LIBS += lib_generic/libgeneric.a
all: u-boot.srec u-boot.bin System.map
install: all
cp u-boot.bin /tftpboot/u-boot.bin
cp u-boot.bin /net/sam/tftpboot/u-boot.bin
-cp u-boot.bin /tftpboot/u-boot.bin
-cp u-boot.bin /net/denx/tftpboot/u-boot.bin
u-boot.srec: u-boot
$(OBJCOPY) ${OBJCFLAGS} -O srec $< $@
@ -611,14 +614,22 @@ shannon_config : unconfig
## ARM920T Systems
#########################################################################
xtract_trab = $(subst _big_flash,,$(subst _config,,$1))
smdk2400_config : unconfig
@./mkconfig $(@:_config=) arm arm920t smdk2400
smdk2410_config : unconfig
@./mkconfig $(@:_config=) arm arm920t smdk2410
trab_config : unconfig
@./mkconfig $(@:_config=) arm arm920t trab
trab_config \
trab_big_flash_config: unconfig
@ >include/config.h
@[ -z "$(findstring _big_flash,$@)" ] || \
{ echo "#define CONFIG_BIG_FLASH" >>include/config.h ; \
echo "... with big flash support" ; \
}
@./mkconfig -a $(call xtract_trab,$@) arm arm920t trab
#########################################################################
## ARM720T Systems
@ -631,18 +642,21 @@ ep7312_config : unconfig
@./mkconfig $(@:_config=) arm arm720t ep7312
#########################################################################
## Xscale Systems
## XScale Systems
#########################################################################
lubbock_config : unconfig
@./mkconfig $(@:_config=) arm xscale lubbock
cradle_config : unconfig
@./mkconfig $(@:_config=) arm xscale cradle
csb226_config : unconfig
@./mkconfig $(@:_config=) arm xscale csb226
innokom_config : unconfig
@./mkconfig $(@:_config=) arm xscale innokom
lubbock_config : unconfig
@./mkconfig $(@:_config=) arm xscale lubbock
#========================================================================
# i386
#========================================================================
@ -652,7 +666,17 @@ csb226_config : unconfig
sc520_cdp_config : unconfig
@./mkconfig $(@:_config=) i386 i386 sc520_cdp
#========================================================================
# MIPS
#========================================================================
#########################################################################
## MIPS32 4Kc
#########################################################################
incaip_config : unconfig
@./mkconfig $(@:_config=) mips mips incaip
clean:
find . -type f \
@ -674,6 +698,7 @@ clobber: clean
rm -fr *.*~
rm -f u-boot u-boot.bin u-boot.elf u-boot.srec u-boot.map System.map
rm -f tools/crc32.c tools/environment.c tools/env/crc32.c
rm -f cpu/mpc824x/bedbug_603e.c
rm -f include/asm/arch include/asm
mrproper \

375
README

@ -395,10 +395,10 @@ The following options need to be configured:
default environment.
- Console Interface:
Depending on board, define exactly one serial port
(like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
console by defining CONFIG_8xx_CONS_NONE
Depending on board, define exactly one serial port
(like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
console by defining CONFIG_8xx_CONS_NONE
Note: if CONFIG_8xx_CONS_NONE is defined, the serial
port routines must be defined elsewhere
@ -443,9 +443,9 @@ The following options need to be configured:
addional board info beside
the logo
When CONFIG_CFB_CONSOLE is defined, video console is
default i/o. Serial console can be forced with
environment 'console=serial'.
When CONFIG_CFB_CONSOLE is defined, video console is
default i/o. Serial console can be forced with
environment 'console=serial'.
- Console Baudrate:
CONFIG_BAUDRATE - in bps
@ -489,15 +489,15 @@ The following options need to be configured:
within "Boot Delay" after reset.
CONFIG_BOOTARGS
This can be used to pass arguments to the bootm
command. The value of CONFIG_BOOTARGS goes into the
environment value "bootargs".
This can be used to pass arguments to the bootm
command. The value of CONFIG_BOOTARGS goes into the
environment value "bootargs".
CONFIG_RAMBOOT and CONFIG_NFSBOOT
The value of these goes into the environment as
"ramboot" and "nfsboot" respectively, and can be used
as a convenience, when switching between booting from
ram and nfs.
The value of these goes into the environment as
"ramboot" and "nfsboot" respectively, and can be used
as a convenience, when switching between booting from
ram and nfs.
- Pre-Boot Commands:
CONFIG_PREBOOT
@ -596,13 +596,13 @@ The following options need to be configured:
Note: Don't enable the "icache" and "dcache" commands
(configuration option CFG_CMD_CACHE) unless you know
what you (and your U-Boot users) are doing. Data
cache cannot be enabled on systems like the 8xx or
8260 (where accesses to the IMMR region must be
uncached), and it cannot be disabled on all other
systems where we (mis-) use the data cache to hold an
initial stack and some data.
(configuration option CFG_CMD_CACHE) unless you know
what you (and your U-Boot users) are doing. Data
cache cannot be enabled on systems like the 8xx or
8260 (where accesses to the IMMR region must be
uncached), and it cannot be disabled on all other
systems where we (mis-) use the data cache to hold an
initial stack and some data.
XXX - this list needs to get updated!
@ -628,10 +628,10 @@ The following options need to be configured:
- Timestamp Support:
When CONFIG_TIMESTAMP is selected, the timestamp
(date and time) of an image is printed by image
commands like bootm or iminfo. This option is
automatically enabled when you select CFG_CMD_DATE .
When CONFIG_TIMESTAMP is selected, the timestamp
(date and time) of an image is printed by image
commands like bootm or iminfo. This option is
automatically enabled when you select CFG_CMD_DATE .
- Partition Support:
CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
@ -720,14 +720,14 @@ The following options need to be configured:
standard LiLo mode numbers.
Following modes are supported (* is default):
800x600 1024x768 1280x1024
256 (8bit) 303* 305 307
65536 (16bit) 314 317 31a
16,7 Mill (24bit) 315 318 31b
800x600 1024x768 1280x1024
256 (8bit) 303* 305 307
65536 (16bit) 314 317 31a
16,7 Mill (24bit) 315 318 31b
(i.e. setenv videomode 317; saveenv; reset;)
CONFIG_VIDEO_SED13806
Enable Epson SED13806 driver. This driver supports 8bpp
Enable Epson SED13806 driver. This driver supports 8bpp
and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
or CONFIG_VIDEO_SED13806_16BPP
@ -839,8 +839,8 @@ The following options need to be configured:
either CONFIG_HARD_I2C or CONFIG_SOFT_I2C must be defined
to include the appropriate I2C driver.
See also: common/cmd_i2c.c for a description of the
command line interface.
See also: common/cmd_i2c.c for a description of the
command line interface.
CONFIG_HARD_I2C
@ -855,14 +855,14 @@ The following options need to be configured:
I2C_INIT
(Optional). Any commands necessary to enable I2C
controller or configure ports.
(Optional). Any commands necessary to enable I2C
controller or configure ports.
I2C_PORT
(Only for MPC8260 CPU). The I/O port to use (the code
assumes both bits are on the same port). Valid values
are 0..3 for ports A..D.
(Only for MPC8260 CPU). The I/O port to use (the code
assumes both bits are on the same port). Valid values
are 0..3 for ports A..D.
I2C_ACTIVE
@ -910,40 +910,40 @@ The following options need to be configured:
CONFIG_SOFT_SPI
Enables a software (bit-bang) SPI driver rather than
using hardware support. This is a general purpose
driver that only requires three general I/O port pins
(two outputs, one input) to function. If this is
defined, the board configuration must define several
SPI configuration items (port pins to use, etc). For
an example, see include/configs/sacsng.h.
Enables a software (bit-bang) SPI driver rather than
using hardware support. This is a general purpose
driver that only requires three general I/O port pins
(two outputs, one input) to function. If this is
defined, the board configuration must define several
SPI configuration items (port pins to use, etc). For
an example, see include/configs/sacsng.h.
- FPGA Support: CONFIG_FPGA_COUNT
Specify the number of FPGA devices to support.
Specify the number of FPGA devices to support.
CONFIG_FPGA
CONFIG_FPGA
Used to specify the types of FPGA devices. For
Used to specify the types of FPGA devices. For
example,
#define CONFIG_FPGA CFG_XILINX_VIRTEX2
CFG_FPGA_PROG_FEEDBACK
Enable printing of hash marks during FPGA
Enable printing of hash marks during FPGA
configuration.
CFG_FPGA_CHECK_BUSY
Enable checks on FPGA configuration interface busy
status by the configuration function. This option
will require a board or device specific function to
be written.
Enable checks on FPGA configuration interface busy
status by the configuration function. This option
will require a board or device specific function to
be written.
CONFIG_FPGA_DELAY
If defined, a function that provides delays in the
FPGA configuration driver.
If defined, a function that provides delays in the
FPGA configuration driver.
CFG_FPGA_CHECK_CTRLC
@ -951,25 +951,25 @@ The following options need to be configured:
CFG_FPGA_CHECK_ERROR
Check for configuration errors during FPGA bitfile
loading. For example, abort during Virtex II
configuration if the INIT_B line goes low (which
indicated a CRC error).
Check for configuration errors during FPGA bitfile
loading. For example, abort during Virtex II
configuration if the INIT_B line goes low (which
indicated a CRC error).
CFG_FPGA_WAIT_INIT
Maximum time to wait for the INIT_B line to deassert
after PROB_B has been deasserted during a Virtex II
FPGA configuration sequence. The default time is 500 mS.
Maximum time to wait for the INIT_B line to deassert
after PROB_B has been deasserted during a Virtex II
FPGA configuration sequence. The default time is 500 mS.
CFG_FPGA_WAIT_BUSY
Maximum time to wait for BUSY to deassert during
Virtex II FPGA configuration. The default is 5 mS.
Maximum time to wait for BUSY to deassert during
Virtex II FPGA configuration. The default is 5 mS.
CFG_FPGA_WAIT_CONFIG
Time to wait after FPGA configuration. The default is
Time to wait after FPGA configuration. The default is
200 mS.
- FPGA Support: CONFIG_FPGA_COUNT
@ -987,10 +987,10 @@ The following options need to be configured:
CFG_FPGA_CHECK_BUSY
Enable checks on FPGA configuration interface busy
status by the configuration function. This option
will require a board or device specific function to
be written.
Enable checks on FPGA configuration interface busy
status by the configuration function. This option
will require a board or device specific function to
be written.
CONFIG_FPGA_DELAY
@ -1002,44 +1002,44 @@ The following options need to be configured:
CFG_FPGA_CHECK_ERROR
Check for configuration errors during FPGA bitfile
loading. For example, abort during Virtex II
configuration if the INIT_B line goes low (which
indicated a CRC error).
Check for configuration errors during FPGA bitfile
loading. For example, abort during Virtex II
configuration if the INIT_B line goes low (which
indicated a CRC error).
CFG_FPGA_WAIT_INIT
Maximum time to wait for the INIT_B line to deassert
after PROB_B has been deasserted during a Virtex II
FPGA configuration sequence. The default time is 500
mS.
Maximum time to wait for the INIT_B line to deassert
after PROB_B has been deasserted during a Virtex II
FPGA configuration sequence. The default time is 500
mS.
CFG_FPGA_WAIT_BUSY
Maximum time to wait for BUSY to deassert during
Virtex II FPGA configuration. The default is 5 mS.
Maximum time to wait for BUSY to deassert during
Virtex II FPGA configuration. The default is 5 mS.
CFG_FPGA_WAIT_CONFIG
Time to wait after FPGA configuration. The default is
200 mS.
Time to wait after FPGA configuration. The default is
200 mS.
- Configuration Management:
CONFIG_IDENT_STRING
If defined, this string will be added to the U-Boot
version information (U_BOOT_VERSION)
If defined, this string will be added to the U-Boot
version information (U_BOOT_VERSION)
- Vendor Parameter Protection:
U-Boot considers the values of the environment
variables "serial#" (Board Serial Number) and
"ethaddr" (Ethernet Address) to bb parameters that
are set once by the board vendor / manufacturer, and
protects these variables from casual modification by
the user. Once set, these variables are read-only,
and write or delete attempts are rejected. You can
change this behviour:
U-Boot considers the values of the environment
variables "serial#" (Board Serial Number) and
"ethaddr" (Ethernet Address) to bb parameters that
are set once by the board vendor / manufacturer, and
protects these variables from casual modification by
the user. Once set, these variables are read-only,
and write or delete attempts are rejected. You can
change this behviour:
If CONFIG_ENV_OVERWRITE is #defined in your config
file, the write protection for vendor parameters is
@ -1099,10 +1099,10 @@ The following options need to be configured:
CONFIG_NET_RETRY_COUNT
This variable defines the number of retries for
network operations like ARP, RARP, TFTP, or BOOTP
before giving up the operation. If not defined, a
default value of 5 is used.
This variable defines the number of retries for
network operations like ARP, RARP, TFTP, or BOOTP
before giving up the operation. If not defined, a
default value of 5 is used.
- Command Interpreter:
CFG_HUSH_PARSER
@ -1125,18 +1125,18 @@ The following options need to be configured:
Note:
In the current implementation, the local variables
space and global environment variables space are
separated. Local variables are those you define by
simply typing like `name=value'. To access a local
variable later on, you have write `$name' or
`${name}'; variable directly by typing say `$name' at
the command prompt.
In the current implementation, the local variables
space and global environment variables space are
separated. Local variables are those you define by
simply typing like `name=value'. To access a local
variable later on, you have write `$name' or
`${name}'; variable directly by typing say `$name' at
the command prompt.
Global environment variables are those you use
setenv/printenv to work with. To run a command stored
in such a variable, you need to use the run command,
and you must not use the '$' sign to access them.
Global environment variables are those you use
setenv/printenv to work with. To run a command stored
in such a variable, you need to use the run command,
and you must not use the '$' sign to access them.
To store commands and special characters in a
variable, please use double quotation marks
@ -1147,38 +1147,38 @@ The following options need to be configured:
- Default Environment
CONFIG_EXTRA_ENV_SETTINGS
Define this to contain any number of null terminated
strings (variable = value pairs) that will be part of
the default enviroment compiled into the boot image.
Define this to contain any number of null terminated
strings (variable = value pairs) that will be part of
the default enviroment compiled into the boot image.
For example, place something like this in your
board's config file:
For example, place something like this in your
board's config file:
#define CONFIG_EXTRA_ENV_SETTINGS \
"myvar1=value1\0" \
"myvar2=value2\0"
Warning: This method is based on knowledge about the
internal format how the environment is stored by the
U-Boot code. This is NOT an official, exported
interface! Although it is unlikely that this format
will change soon, but there is no guarantee either.
Warning: This method is based on knowledge about the
internal format how the environment is stored by the
U-Boot code. This is NOT an official, exported
interface! Although it is unlikely that this format
will change soon, but there is no guarantee either.
You better know what you are doing here.
Note: overly (ab)use of the default environment is
discouraged. Make sure to check other ways to preset
the environment like the autoscript function or the
boot command first.
Note: overly (ab)use of the default environment is
discouraged. Make sure to check other ways to preset
the environment like the autoscript function or the
boot command first.
- Show boot progress
CONFIG_SHOW_BOOT_PROGRESS
Defining this option allows to add some board-
specific code (calling a user-provided function
"show_boot_progress(int)") that enables you to show
the system's boot progress on some display (for
example, some LED's) on your board. At the moment,
the following checkpoints are implemented:
Defining this option allows to add some board-
specific code (calling a user-provided function
"show_boot_progress(int)") that enables you to show
the system's boot progress on some display (for
example, some LED's) on your board. At the moment,
the following checkpoints are implemented:
Arg Where When
1 common/cmd_bootm.c before attempting to boot an image
@ -1241,23 +1241,23 @@ Modem Support:
- Modem debug support:
CONFIG_MODEM_SUPPORT_DEBUG
Enables debugging stuff (char screen[1024], dbg())
for modem support. Useful only with BDI2000.
Enables debugging stuff (char screen[1024], dbg())
for modem support. Useful only with BDI2000.
- General:
In the target system modem support is enabled when a
specific key (key combination) is pressed during
power-on. Otherwise U-Boot will boot normally
(autoboot). The key_pressed() fuction is called from
board_init(). Currently key_pressed() is a dummy
function, returning 1 and thus enabling modem
initialization.
In the target system modem support is enabled when a
specific key (key combination) is pressed during
power-on. Otherwise U-Boot will boot normally
(autoboot). The key_pressed() fuction is called from
board_init(). Currently key_pressed() is a dummy
function, returning 1 and thus enabling modem
initialization.
If there are no modem init strings in the
environment, U-Boot proceed to autoboot; the
previous output (banner, info printfs) will be
supressed, though.
If there are no modem init strings in the
environment, U-Boot proceed to autoboot; the
previous output (banner, info printfs) will be
supressed, though.
See also: doc/README.Modem
@ -1368,8 +1368,8 @@ Configuration Settings:
downloaded image) this option may be very useful.
- CFG_FLASH_CFI:
Define if the flash driver uses extra elements in the
common flash structure for storing flash geometry
Define if the flash driver uses extra elements in the
common flash structure for storing flash geometry
The following definitions that deal with the placement and management
of environment data (variable area); in general, we support the
@ -1435,10 +1435,10 @@ following configurations:
- CFG_ENV_ADDR_REDUND
CFG_ENV_SIZE_REDUND
These settings describe a second storage area used to hold
a redundand copy of the environment data, so that there is
a valid backup copy in case there is a power failur during
a "saveenv" operation.
These settings describe a second storage area used to hold
a redundand copy of the environment data, so that there is
a valid backup copy in case there is a power failur during
a "saveenv" operation.
BE CAREFUL! Any changes to the flash layout, and some changes to the
source code will make it necessary to adapt <board>/u-boot.lds*
@ -1501,25 +1501,6 @@ to save the current settings.
- CFG_EEPROM_SIZE:
The size in bytes of the EEPROM device.
- CFG_I2C_EEPROM_ADDR:
If defined, specified the chip address of the EEPROM device.
The default address is zero.
- CFG_EEPROM_PAGE_WRITE_BITS:
If defined, the number of bits used to address bytes in a
single page in the EEPROM device. A 64 byte page, for example
would require six bits.
- CFG_EEPROM_PAGE_WRITE_DELAY_MS:
If defined, the number of milliseconds to delay between
page writes. The default is zero milliseconds.
- CFG_I2C_EEPROM_ADDR_LEN:
The length in bytes of the EEPROM memory array address. Note
that this is NOT the chip address length!
- CFG_EEPROM_SIZE:
The size in bytes of the EEPROM device.
- CFG_SPI_INIT_OFFSET
@ -1575,19 +1556,19 @@ Low Level (hardware related) configuration options:
CFG_ISA_IO_OFFSET
defines the offset of register from address. It
depends on which part of the data bus is connected to
the fdc chipset. (default value 0)
defines the offset of register from address. It
depends on which part of the data bus is connected to
the fdc chipset. (default value 0)
If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
CFG_FDC_DRIVE_NUMBER are undefined, they take their
default value.
If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
CFG_FDC_DRIVE_NUMBER are undefined, they take their
default value.
if CFG_FDC_HW_INIT is defined, then the function
fdc_hw_init() is called at the beginning of the FDC
setup. fdc_hw_init() must be provided by the board
source code. It is used to make hardware dependant
initializations.
if CFG_FDC_HW_INIT is defined, then the function
fdc_hw_init() is called at the beginning of the FDC
setup. fdc_hw_init() must be provided by the board
source code. It is used to make hardware dependant
initializations.
- CFG_IMMR: Physical address of the Internal Memory Mapped
Register; DO NOT CHANGE! (11-4)
@ -1676,10 +1657,10 @@ Low Level (hardware related) configuration options:
doc/README.MBX before setting this variable!
- CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
Offset of the bootmode word in DPRAM used by post
(Power On Self Tests). This definition overrides
#define'd default value in commproc.h resp.
cpm_8260.h.
Offset of the bootmode word in DPRAM used by post
(Power On Self Tests). This definition overrides
#define'd default value in commproc.h resp.
cpm_8260.h.
Building the Software:
======================
@ -2536,6 +2517,44 @@ models provide on-chip memory (like the IMMR area on MPC8xx and
MPC826x processors), on others (parts of) the data cache can be
locked as (mis-) used as memory, etc.
Chris Hallinan posted a good summy of these issues to the
u-boot-users mailing list:
Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
From: "Chris Hallinan" <clh@net1plus.com>
Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
...
Correct me if I'm wrong, folks, but the way I understand it
is this: Using DCACHE as initial RAM for Stack, etc, does not
require any physical RAM backing up the cache. The cleverness
is that the cache is being used as a temporary supply of
necessary storage before the SDRAM controller is setup. It's
beyond the scope of this list to expain the details, but you
can see how this works by studying the cache architecture and
operation in the architecture and processor-specific manuals.
OCM is On Chip Memory, which I believe the 405GP has 4K. It
is another option for the system designer to use as an
initial stack/ram area prior to SDRAM being available. Either
option should work for you. Using CS 4 should be fine if your
board designers haven't used it for something that would
cause you grief during the initial boot! It is frequently not
used.
CFG_INIT_RAM_ADDR should be somewhere that won't interfere
with your processor/board/system design. The default value
you will find in any recent u-boot distribution in
Walnut405.h should work for you. I'd set it to a value larger
than your SDRAM module. If you have a 64MB SDRAM module, set
it above 400_0000. Just make sure your board has no resources
that are supposed to respond to that address! That code in
start.S has been around a while and should work as is when
you get the config right.
-Chris Hallinan
DS4.COM, Inc.
It is essential to remember this, since it has some impact on the C
code for the initialization procedures:

@ -0,0 +1,47 @@
#
# (C) Copyright 2000
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# See file CREDITS for list of people who contributed to this
# project.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
#
include $(TOPDIR)/config.mk
LIB = lib$(BOARD).a
OBJS := innokom.o flash.o
SOBJS := memsetup.o
$(LIB): $(OBJS) $(SOBJS)
$(AR) crv $@ $^
clean:
rm -f $(SOBJS) $(OBJS)
distclean: clean
rm -f $(LIB) core *.bak .depend
#########################################################################
.depend: Makefile $(SOBJS:.o=.S) $(OBJS:.o=.c)
$(CC) -M $(CPPFLAGS) $(SOBJS:.o=.S) $(OBJS:.o=.c) > $@
-include .depend
#########################################################################

@ -0,0 +1,16 @@
#
# Linux-Kernel is expected to be at c000'8000, entry c000'8000
#
# we load ourself to c170'0000, the upper 1 MB of second bank
#
# download areas is c800'0000
#
# This is the address where U-Boot lives in flash:
#TEXT_BASE = 0
# FIXME: armboot does only work correctly when being compiled
# for the addresses _after_ relocation to RAM!! Otherwhise the
# .bss segment is assumed in flash...
TEXT_BASE = 0xa1fe0000

@ -0,0 +1,377 @@
/*
* (C) Copyright 2002
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* (C) Copyright 2002
* Robert Schwebel, Pengutronix, <r.schwebel@pengutronix.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/pxa-regs.h>
#define FLASH_BANK_SIZE 0x02000000
#define MAIN_SECT_SIZE 0x40000 /* 2x16 = 256k per sector */
flash_info_t flash_info[CFG_MAX_FLASH_BANKS];
/**
* flash_init: - initialize data structures for flash chips
*
* @return: size of the flash
*/
ulong flash_init(void)
{
int i, j;
ulong size = 0;
for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) {
ulong flashbase = 0;
flash_info[i].flash_id =
(INTEL_MANUFACT & FLASH_VENDMASK) |
(INTEL_ID_28F128J3 & FLASH_TYPEMASK);
flash_info[i].size = FLASH_BANK_SIZE;
flash_info[i].sector_count = CFG_MAX_FLASH_SECT;
memset(flash_info[i].protect, 0, CFG_MAX_FLASH_SECT);
switch (i) {
case 0:
flashbase = PHYS_FLASH_1;
break;
default:
panic("configured to many flash banks!\n");
break;
}
for (j = 0; j < flash_info[i].sector_count; j++) {
flash_info[i].start[j] = flashbase + j*MAIN_SECT_SIZE;
}
size += flash_info[i].size;
}
/* Protect monitor and environment sectors */
flash_protect(FLAG_PROTECT_SET,
CFG_FLASH_BASE,
CFG_FLASH_BASE + _armboot_end_data - _armboot_start,
&flash_info[0]);
#ifdef CFG_ENV_IS_IN_FLASH
flash_protect(FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR + CFG_ENV_SIZE - 1,
&flash_info[0]);
#endif
return size;
}
/**
* flash_print_info: - print information about the flash situation
*
* @param info:
*/
void flash_print_info (flash_info_t *info)
{
int i, j;
for (j=0; j<CFG_MAX_FLASH_BANKS; j++) {
switch (info->flash_id & FLASH_VENDMASK) {
case (INTEL_MANUFACT & FLASH_VENDMASK):
printf("Intel: ");
break;
default:
printf("Unknown Vendor ");
break;
}
switch (info->flash_id & FLASH_TYPEMASK) {
case (INTEL_ID_28F128J3 & FLASH_TYPEMASK):
printf("28F128J3 (128Mbit)\n");
break;
default:
printf("Unknown Chip Type\n");
return;
}
printf(" Size: %ld MB in %d Sectors\n",
info->size >> 20, info->sector_count);
printf(" Sector Start Addresses:");
for (i = 0; i < info->sector_count; i++) {
if ((i % 5) == 0) printf ("\n ");
printf (" %08lX%s", info->start[i],
info->protect[i] ? " (RO)" : " ");
}
printf ("\n");
info++;
}
}
/**
* flash_erase: - erase flash sectors
*
*/
int flash_erase(flash_info_t *info, int s_first, int s_last)
{
int flag, prot, sect;
int rc = ERR_OK;
if (info->flash_id == FLASH_UNKNOWN)
return ERR_UNKNOWN_FLASH_TYPE;
if ((s_first < 0) || (s_first > s_last)) {
return ERR_INVAL;
}
if ((info->flash_id & FLASH_VENDMASK) != (INTEL_MANUFACT & FLASH_VENDMASK))
return ERR_UNKNOWN_FLASH_VENDOR;
prot = 0;
for (sect=s_first; sect<=s_last; ++sect) {
if (info->protect[sect]) prot++;
}
if (prot) return ERR_PROTECTED;
/*
* Disable interrupts which might cause a timeout
* here. Remember that our exception vectors are
* at address 0 in the flash, and we don't want a
* (ticker) exception to happen while the flash
* chip is in programming mode.
*/
flag = disable_interrupts();
/* Start erase on unprotected sectors */
for (sect = s_first; sect<=s_last && !ctrlc(); sect++) {
printf("Erasing sector %2d ... ", sect);
/* arm simple, non interrupt dependent timer */
reset_timer_masked();
if (info->protect[sect] == 0) { /* not protected */
u32 * volatile addr = (u32 * volatile)(info->start[sect]);
/* erase sector: */
/* The strata flashs are aligned side by side on */
/* the data bus, so we have to write the commands */
/* to both chips here: */
*addr = 0x00200020; /* erase setup */
*addr = 0x00D000D0; /* erase confirm */
while ((*addr & 0x00800080) != 0x00800080) {
if (get_timer_masked() > CFG_FLASH_ERASE_TOUT) {
*addr = 0x00B000B0; /* suspend erase*/
*addr = 0x00FF00FF; /* read mode */
rc = ERR_TIMOUT;
goto outahere;
}
}
*addr = 0x00500050; /* clear status register cmd. */
*addr = 0x00FF00FF; /* resest to read mode */
}
printf("ok.\n");
}
if (ctrlc()) printf("User Interrupt!\n");
outahere:
/* allow flash to settle - wait 10 ms */
udelay_masked(10000);
if (flag) enable_interrupts();
return rc;
}
/**
* write_word: - copy memory to flash
*
* @param info:
* @param dest:
* @param data:
* @return:
*/
static int write_word (flash_info_t *info, ulong dest, ushort data)
{
ushort *addr = (ushort *)dest, val;
int rc = ERR_OK;
int flag;
/* Check if Flash is (sufficiently) erased */
if ((*addr & data) != data) return ERR_NOT_ERASED;
/*
* Disable interrupts which might cause a timeout
* here. Remember that our exception vectors are
* at address 0 in the flash, and we don't want a
* (ticker) exception to happen while the flash
* chip is in programming mode.
*/
flag = disable_interrupts();
/* clear status register command */
*addr = 0x50;
/* program set-up command */
*addr = 0x40;
/* latch address/data */
*addr = data;
/* arm simple, non interrupt dependent timer */
reset_timer_masked();
/* wait while polling the status register */
while(((val = *addr) & 0x80) != 0x80) {
if (get_timer_masked() > CFG_FLASH_WRITE_TOUT) {
rc = ERR_TIMOUT;
*addr = 0xB0; /* suspend program command */
goto outahere;
}
}
if(val & 0x1A) { /* check for error */
printf("\nFlash write error %02x at address %08lx\n",
(int)val, (unsigned long)dest);
if(val & (1<<3)) {
printf("Voltage range error.\n");
rc = ERR_PROG_ERROR;
goto outahere;
}
if(val & (1<<1)) {
printf("Device protect error.\n");
rc = ERR_PROTECTED;
goto outahere;
}
if(val & (1<<4)) {
printf("Programming error.\n");
rc = ERR_PROG_ERROR;
goto outahere;
}
rc = ERR_PROG_ERROR;
goto outahere;
}
outahere:
*addr = 0xFF; /* read array command */
if (flag) enable_interrupts();
return rc;
}
/**
* write_buf: - Copy memory to flash.
*
* @param info:
* @param src: source of copy transaction
* @param addr: where to copy to
* @param cnt: number of bytes to copy
*
* @return error code
*/
int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
{
ulong cp, wp;
ushort data;
int l;
int i, rc;
wp = (addr & ~1); /* get lower word aligned address */
/*
* handle unaligned start bytes
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i=0, cp=wp; i<l; ++i, ++cp) {
data = (data >> 8) | (*(uchar *)cp << 8);
}
for (; i<2 && cnt>0; ++i) {
data = (data >> 8) | (*src++ << 8);
--cnt;
++cp;
}
for (; cnt==0 && i<2; ++i, ++cp) {
data = (data >> 8) | (*(uchar *)cp << 8);
}
if ((rc = write_word(info, wp, data)) != 0) {
return (rc);
}
wp += 2;
}
/*
* handle word aligned part
*/
while (cnt >= 2) {
/* data = *((vushort*)src); */
data = *((ushort*)src);
if ((rc = write_word(info, wp, data)) != 0) {
return (rc);
}
src += 2;
wp += 2;
cnt -= 2;
}
if (cnt == 0) return ERR_OK;
/*
* handle unaligned tail bytes
*/
data = 0;
for (i=0, cp=wp; i<2 && cnt>0; ++i, ++cp) {
data = (data >> 8) | (*src++ << 8);
--cnt;
}
for (; i<2; ++i, ++cp) {
data = (data >> 8) | (*(uchar *)cp << 8);
}
return write_word(info, wp, data);
}

@ -0,0 +1,139 @@
/*
* (C) Copyright 2002
* Robert Schwebel, Pengutronix, r.schwebel@pengutronix.de
* Kyle Harris, Nexus Technologies, Inc., kharris@nexus-tech.net
* Marius Groeger, Sysgo Real-Time Solutions GmbH, mgroeger@sysgo.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/pxa-regs.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
#else
# define SHOW_BOOT_PROGRESS(arg)
#endif
/*
* Miscelaneous platform dependent initialisations
*/
/**
* board_init: - setup some data structures
*
* @return: 0 in case of success
*/
int board_init (void)
{
DECLARE_GLOBAL_DATA_PTR;
/* memory and cpu-speed are setup before relocation */
/* so we do _nothing_ here */
/* arch number of Innokom board */
gd->bd->bi_arch_number = 258;
/* adress of boot parameters */
gd->bd->bi_boot_params = 0xa0000100;
return 0;
}
/**
* dram_init: - setup dynamic RAM
*
* @return: 0 in case of success
*/
int dram_init (void)
{
DECLARE_GLOBAL_DATA_PTR;
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
return 0;
}
/**
* innokom_set_led: - switch LEDs on or off
*
* @param led: LED to switch (0,1,2)
* @param state: switch on (1) or off (0)
*/
void innokom_set_led(int led, int state)
{
switch(led) {
/*
case 0: if (state==1) {
GPCR0 |= CSB226_USER_LED0;
} else if (state==0) {
GPSR0 |= CSB226_USER_LED0;
}
break;
case 1: if (state==1) {
GPCR0 |= CSB226_USER_LED1;
} else if (state==0) {
GPSR0 |= CSB226_USER_LED1;
}
break;
case 2: if (state==1) {
GPCR0 |= CSB226_USER_LED2;
} else if (state==0) {
GPSR0 |= CSB226_USER_LED2;
}
break;
*/
}
return;
}
/**
* show_boot_progress: - indicate state of the boot process
*
* @param status: Status number - see README for details.
*
* The CSB226 does only have 3 LEDs, so we switch them on at the most
* important states (1, 5, 15).
*/
void show_boot_progress (int status)
{
switch(status) {
/*
case 1: csb226_set_led(0,1); break;
case 5: csb226_set_led(1,1); break;
case 15: csb226_set_led(2,1); break;
*/
}
return;
}

@ -0,0 +1,429 @@
/*
* Most of this taken from Redboot hal_platform_setup.h with cleanup
*
* NOTE: I haven't clean this up considerably, just enough to get it
* running. See hal_platform_setup.h for the source. See
* board/cradle/memsetup.S for another PXA250 setup that is
* much cleaner.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <version.h>
#include <asm/arch/pxa-regs.h>
DRAM_SIZE: .long CFG_DRAM_SIZE
/* wait for coprocessor write complete */
.macro CPWAIT reg
mrc p15,0,\reg,c2,c0,0
mov \reg,\reg
sub pc,pc,#4
.endm
/*
* Memory setup
*/
.globl memsetup
memsetup:
mov r10, lr
/* Set up GPIO pins first ----------------------------------------- */
ldr r0, =GPSR0
ldr r1, =CFG_GPSR0_VAL
str r1, [r0]
ldr r0, =GPSR1
ldr r1, =CFG_GPSR1_VAL
str r1, [r0]
ldr r0, =GPSR2
ldr r1, =CFG_GPSR2_VAL
str r1, [r0]
ldr r0, =GPCR0
ldr r1, =CFG_GPCR0_VAL
str r1, [r0]
ldr r0, =GPCR1
ldr r1, =CFG_GPCR1_VAL
str r1, [r0]
ldr r0, =GPCR2
ldr r1, =CFG_GPCR2_VAL
str r1, [r0]
ldr r0, =GPDR0
ldr r1, =CFG_GPDR0_VAL
str r1, [r0]
ldr r0, =GPDR1
ldr r1, =CFG_GPDR1_VAL
str r1, [r0]
ldr r0, =GPDR2
ldr r1, =CFG_GPDR2_VAL
str r1, [r0]
ldr r0, =GAFR0_L
ldr r1, =CFG_GAFR0_L_VAL
str r1, [r0]
ldr r0, =GAFR0_U
ldr r1, =CFG_GAFR0_U_VAL
str r1, [r0]
ldr r0, =GAFR1_L
ldr r1, =CFG_GAFR1_L_VAL
str r1, [r0]
ldr r0, =GAFR1_U
ldr r1, =CFG_GAFR1_U_VAL
str r1, [r0]
ldr r0, =GAFR2_L
ldr r1, =CFG_GAFR2_L_VAL
str r1, [r0]
ldr r0, =GAFR2_U
ldr r1, =CFG_GAFR2_U_VAL
str r1, [r0]
ldr r0, =PSSR /* enable GPIO pins */
ldr r1, =CFG_PSSR_VAL
str r1, [r0]
/* ldr r3, =MSC1 / low - bank 2 Lubbock Registers / SRAM */
/* ldr r2, =CFG_MSC1_VAL / high - bank 3 Ethernet Controller */
/* str r2, [r3] / need to set MSC1 before trying to write to the HEX LEDs */
/* ldr r2, [r3] / need to read it back to make sure the value latches (see MSC section of manual) */
/* */
/* ldr r1, =LED_BLANK */
/* mov r0, #0xFF */
/* str r0, [r1] / turn on hex leds */
/* */
/*loop: */
/* */
/* ldr r0, =0xB0070001 */
/* ldr r1, =_LED */
/* str r0, [r1] / hex display */
/* ---------------------------------------------------------------- */
/* Enable memory interface */
/* */
/* The sequence below is based on the recommended init steps */
/* detailed in the Intel PXA250 Operating Systems Developers Guide, */
/* Chapter 10. */
/* ---------------------------------------------------------------- */
/* ---------------------------------------------------------------- */
/* Step 1: Wait for at least 200 microsedonds to allow internal */
/* clocks to settle. Only necessary after hard reset... */
/* FIXME: can be optimized later */
/* ---------------------------------------------------------------- */
ldr r3, =OSCR /* reset the OS Timer Count to zero */
mov r2, #0
str r2, [r3]
ldr r4, =0x300 /* really 0x2E1 is about 200usec, */
/* so 0x300 should be plenty */
1:
ldr r2, [r3]
cmp r4, r2
bgt 1b
mem_init:
ldr r1, =MEMC_BASE /* get memory controller base addr. */
/* ---------------------------------------------------------------- */
/* Step 2a: Initialize Asynchronous static memory controller */
/* ---------------------------------------------------------------- */
/* MSC registers: timing, bus width, mem type */
/* MSC0: nCS(0,1) */
ldr r2, =CFG_MSC0_VAL
str r2, [r1, #MSC0_OFFSET]
ldr r2, [r1, #MSC0_OFFSET] /* read back to ensure */
/* that data latches */
/* MSC1: nCS(2,3) */
ldr r2, =CFG_MSC1_VAL
str r2, [r1, #MSC1_OFFSET]
ldr r2, [r1, #MSC1_OFFSET]
/* MSC2: nCS(4,5) */
ldr r2, =CFG_MSC2_VAL
str r2, [r1, #MSC2_OFFSET]
ldr r2, [r1, #MSC2_OFFSET]
/* ---------------------------------------------------------------- */
/* Step 2b: Initialize Card Interface */
/* ---------------------------------------------------------------- */
/* MECR: Memory Expansion Card Register */
ldr r2, =CFG_MECR_VAL
str r2, [r1, #MECR_OFFSET]
ldr r2, [r1, #MECR_OFFSET]
/* MCMEM0: Card Interface slot 0 timing */
ldr r2, =CFG_MCMEM0_VAL
str r2, [r1, #MCMEM0_OFFSET]
ldr r2, [r1, #MCMEM0_OFFSET]
/* MCMEM1: Card Interface slot 1 timing */
ldr r2, =CFG_MCMEM1_VAL
str r2, [r1, #MCMEM1_OFFSET]
ldr r2, [r1, #MCMEM1_OFFSET]
/* MCATT0: Card Interface Attribute Space Timing, slot 0 */
ldr r2, =CFG_MCATT0_VAL
str r2, [r1, #MCATT0_OFFSET]
ldr r2, [r1, #MCATT0_OFFSET]
/* MCATT1: Card Interface Attribute Space Timing, slot 1 */
ldr r2, =CFG_MCATT1_VAL
str r2, [r1, #MCATT1_OFFSET]
ldr r2, [r1, #MCATT1_OFFSET]
/* MCIO0: Card Interface I/O Space Timing, slot 0 */
ldr r2, =CFG_MCIO0_VAL
str r2, [r1, #MCIO0_OFFSET]
ldr r2, [r1, #MCIO0_OFFSET]
/* MCIO1: Card Interface I/O Space Timing, slot 1 */
ldr r2, =CFG_MCIO1_VAL
str r2, [r1, #MCIO1_OFFSET]
ldr r2, [r1, #MCIO1_OFFSET]
/* ---------------------------------------------------------------- */
/* Step 2c: Write FLYCNFG FIXME: what's that??? */
/* ---------------------------------------------------------------- */
/* ---------------------------------------------------------------- */
/* Step 2d: Initialize Timing for Sync Memory (SDCLK0) */
/* ---------------------------------------------------------------- */
/* Before accessing MDREFR we need a valid DRI field, so we set */
/* this to power on defaults + DIR field. */
ldr r4, =0x03ca4fff
str r4, [r1, #MDREFR_OFFSET] /* write back MDREFR */
ldr r4, [r1, #MDREFR_OFFSET]
ldr r4, =0x03ca4030
str r4, [r1, #MDREFR_OFFSET] /* write back MDREFR */
ldr r4, [r1, #MDREFR_OFFSET]
/* Note: preserve the mdrefr value in r4 */
/* ---------------------------------------------------------------- */
/* Step 3: Initialize Synchronous Static Memory (Flash/Peripherals) */
/* ---------------------------------------------------------------- */
/* Initialize SXCNFG register. Assert the enable bits */
/* Write SXMRS to cause an MRS command to all enabled banks of */
/* synchronous static memory. Note that SXLCR need not be written */
/* at this time. */
/* FIXME: we use async mode for now */
/* ---------------------------------------------------------------- */
/* Step 4: Initialize SDRAM */
/* ---------------------------------------------------------------- */
/* Step 4a: assert MDREFR:K1RUN and MDREFR:K2RUN and configure */
/* MDREFR:K1DB2 and MDREFR:K2DB2 as desired. */
orr r4, r4, #(MDREFR_K1RUN|MDREFR_K0RUN)
str r4, [r1, #MDREFR_OFFSET] /* write back MDREFR */
ldr r4, [r1, #MDREFR_OFFSET]
/* Step 4b: de-assert MDREFR:SLFRSH. */
bic r4, r4, #(MDREFR_SLFRSH)
str r4, [r1, #MDREFR_OFFSET] /* write back MDREFR */
ldr r4, [r1, #MDREFR_OFFSET]
/* Step 4c: assert MDREFR:E1PIN and E0PIO */
orr r4, r4, #(MDREFR_E1PIN|MDREFR_E0PIN)
str r4, [r1, #MDREFR_OFFSET] /* write back MDREFR */
ldr r4, [r1, #MDREFR_OFFSET]
/* Step 4d: write MDCNFG with MDCNFG:DEx deasserted (set to 0), to */
/* configure but not enable each SDRAM partition pair. */
ldr r4, =CFG_MDCNFG_VAL
bic r4, r4, #(MDCNFG_DE0|MDCNFG_DE1)
str r4, [r1, #MDCNFG_OFFSET] /* write back MDCNFG */
ldr r4, [r1, #MDCNFG_OFFSET]
/* Step 4e: Wait for the clock to the SDRAMs to stabilize, */
/* 100..200 µsec. */
ldr r3, =OSCR /* reset the OS Timer Count to zero */
mov r2, #0
str r2, [r3]
ldr r4, =0x300 /* really 0x2E1 is about 200usec, */
/* so 0x300 should be plenty */
1:
ldr r2, [r3]
cmp r4, r2
bgt 1b
/* Step 4f: Trigger a number (usually 8) refresh cycles by */
/* attempting non-burst read or write accesses to disabled */
/* SDRAM, as commonly specified in the power up sequence */
/* documented in SDRAM data sheets. The address(es) used */
/* for this purpose must not be cacheable. */
ldr r3, =CFG_DRAM_BASE
str r2, [r3]
str r2, [r3]
str r2, [r3]
str r2, [r3]
str r2, [r3]
str r2, [r3]
str r2, [r3]
str r2, [r3]
/* Step 4g: Write MDCNFG with enable bits asserted */
/* (MDCNFG:DEx set to 1). */
ldr r3, [r1, #MDCNFG_OFFSET]
orr r3, r3, #(MDCNFG_DE0|MDCNFG_DE1)
str r3, [r1, #MDCNFG_OFFSET]
/* Step 4h: Write MDMRS. */
ldr r2, =CFG_MDMRS_VAL
str r2, [r1, #MDMRS_OFFSET]
/* We are finished with Intel's memory controller initialisation */
/* ---------------------------------------------------------------- */
/* Disable (mask) all interrupts at interrupt controller */
/* ---------------------------------------------------------------- */
initirqs:
mov r1, #0 /* clear int. level register (IRQ, not FIQ) */
ldr r2, =ICLR
str r1, [r2]
ldr r2, =ICMR /* mask all interrupts at the controller */
str r1, [r2]
/* ---------------------------------------------------------------- */
/* Clock initialisation */
/* ---------------------------------------------------------------- */
initclks:
/* Disable the peripheral clocks, and set the core clock frequency */
/* (hard-coding at 398.12MHz for now). */
/* Turn Off ALL on-chip peripheral clocks for re-configuration */
/* Note: See label 'ENABLECLKS' for the re-enabling */
ldr r1, =CKEN
mov r2, #0
str r2, [r1]
/* default value in case no valid rotary switch setting is found */
ldr r2, =(CCCR_L27|CCCR_M2|CCCR_N10) /* DEFAULT: {200/200/100} */
/* ... and write the core clock config register */
ldr r1, =CCCR
str r2, [r1]
/* enable the 32Khz oscillator for RTC and PowerManager */
/*
ldr r1, =OSCC
mov r2, #OSCC_OON
str r2, [r1]
*/
/* NOTE: spin here until OSCC.OOK get set, meaning the PLL */
/* has settled. */
60:
ldr r2, [r1]
ands r2, r2, #1
beq 60b
/* ---------------------------------------------------------------- */
/* */
/* ---------------------------------------------------------------- */
/* Save SDRAM size */
ldr r1, =DRAM_SIZE
str r8, [r1]
/* Interrupt init: Mask all interrupts */
ldr r0, =ICMR /* enable no sources */
mov r1, #0
str r1, [r0]
/* FIXME */
#define NODEBUG
#ifdef NODEBUG
/*Disable software and data breakpoints */
mov r0,#0
mcr p15,0,r0,c14,c8,0 /* ibcr0 */
mcr p15,0,r0,c14,c9,0 /* ibcr1 */
mcr p15,0,r0,c14,c4,0 /* dbcon */
/*Enable all debug functionality */
mov r0,#0x80000000
mcr p14,0,r0,c10,c0,0 /* dcsr */
#endif
/* ---------------------------------------------------------------- */
/* End memsetup */
/* ---------------------------------------------------------------- */
endmemsetup:
mov pc, lr

@ -0,0 +1,53 @@
/*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
. = 0x00000000;
. = ALIGN(4);
.text :
{
cpu/xscale/start.o (.text)
*(.text)
}
. = ALIGN(4);
.rodata : { *(.rodata) }
. = ALIGN(4);
.data : { *(.data) }
. = ALIGN(4);
.got : { *(.got) }
armboot_end_data = .;
. = ALIGN(4);
.bss : { *(.bss) }
armboot_end = .;
}

@ -24,10 +24,12 @@
* MA 02111-1307 USA
*/
/* #define DEBUG */
#include <common.h>
#include <mpc8xx.h>
flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */
flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */
#if defined(CFG_ENV_IS_IN_FLASH)
# ifndef CFG_ENV_ADDR
@ -52,44 +54,44 @@ flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */
#define FLASH_PORT_WIDTH16
#ifdef FLASH_PORT_WIDTH16
#define FLASH_PORT_WIDTH ushort
#define FLASH_PORT_WIDTHV vu_short
#define FLASH_PORT_WIDTH ushort
#define FLASH_PORT_WIDTHV vu_short
#else
#define FLASH_PORT_WIDTH ulong
#define FLASH_PORT_WIDTHV vu_long
#define FLASH_PORT_WIDTH ulong
#define FLASH_PORT_WIDTHV vu_long
#endif
#define FPW FLASH_PORT_WIDTH
#define FPWV FLASH_PORT_WIDTHV
#define FPW FLASH_PORT_WIDTH
#define FPWV FLASH_PORT_WIDTHV
/*-----------------------------------------------------------------------
* Functions
*/
static ulong flash_get_size (FPW *addr, flash_info_t *info);
static int write_data (flash_info_t *info, ulong dest, FPW data);
static void flash_get_offsets (ulong base, flash_info_t *info);
static ulong flash_get_size (FPW * addr, flash_info_t * info);
static int write_data (flash_info_t * info, ulong dest, FPW data);
static void flash_get_offsets (ulong base, flash_info_t * info);
/*-----------------------------------------------------------------------
*/
unsigned long flash_init (void)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile immap_t *immap = (immap_t *) CFG_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
unsigned long size_b0;
int i;
/* Init: no FLASHes known */
for (i=0; i<CFG_MAX_FLASH_BANKS; ++i) {
for (i = 0; i < CFG_MAX_FLASH_BANKS; ++i) {
flash_info[i].flash_id = FLASH_UNKNOWN;
}
/* Static FLASH Bank configuration here - FIXME XXX */
size_b0 = flash_get_size((FPW *)FLASH_BASE0_PRELIM, &flash_info[0]);
size_b0 = flash_get_size ((FPW *) FLASH_BASE0_PRELIM, &flash_info[0]);
if (flash_info[0].flash_id == FLASH_UNKNOWN) {
printf ("## Unknown FLASH on Bank 0 - Size = 0x%08lx = %ld MB\n",
size_b0, size_b0<<20);
size_b0, size_b0 << 20);
}
/* Remap FLASH according to real size */
@ -97,24 +99,24 @@ unsigned long flash_init (void)
memctl->memc_br0 = (CFG_FLASH_BASE & BR_BA_MSK) | BR_PS_16 | BR_MS_GPCM | BR_V;
/* Re-do sizing to get full correct info */
size_b0 = flash_get_size((FPW *)CFG_FLASH_BASE, &flash_info[0]);
size_b0 = flash_get_size ((FPW *) CFG_FLASH_BASE, &flash_info[0]);
flash_get_offsets (CFG_FLASH_BASE, &flash_info[0]);
#if CFG_MONITOR_BASE >= CFG_FLASH_BASE
/* monitor protection ON by default */
(void)flash_protect(FLAG_PROTECT_SET,
CFG_FLASH_BASE,
CFG_FLASH_BASE+CFG_MONITOR_LEN-1,
&flash_info[0]);
(void) flash_protect (FLAG_PROTECT_SET,
CFG_FLASH_BASE,
CFG_FLASH_BASE + CFG_MONITOR_LEN - 1,
&flash_info[0]);
#endif
#ifdef CFG_ENV_IS_IN_FLASH
/* ENV protection ON by default */
flash_protect(FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR+CFG_ENV_SIZE-1,
&flash_info[0]);
flash_protect (FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR + CFG_ENV_SIZE - 1,
&flash_info[0]);
#endif
flash_info[0].size = size_b0;
@ -124,7 +126,7 @@ unsigned long flash_init (void)
/*-----------------------------------------------------------------------
*/
static void flash_get_offsets (ulong base, flash_info_t *info)
static void flash_get_offsets (ulong base, flash_info_t * info)
{
int i;
@ -141,7 +143,7 @@ static void flash_get_offsets (ulong base, flash_info_t *info)
/*-----------------------------------------------------------------------
*/
void flash_print_info (flash_info_t *info)
void flash_print_info (flash_info_t * info)
{
int i;
@ -151,31 +153,39 @@ void flash_print_info (flash_info_t *info)
}
switch (info->flash_id & FLASH_VENDMASK) {
case FLASH_MAN_INTEL: printf ("INTEL "); break;
default: printf ("Unknown Vendor "); break;
case FLASH_MAN_INTEL:
printf ("INTEL ");
break;
default:
printf ("Unknown Vendor ");
break;
}
switch (info->flash_id & FLASH_TYPEMASK) {
case FLASH_28F320J3A:
printf ("28F320J3A\n"); break;
case FLASH_28F640J3A:
printf ("28F640J3A\n"); break;
case FLASH_28F128J3A:
printf ("28F128J3A\n"); break;
default: printf ("Unknown Chip Type\n"); break;
case FLASH_28F320J3A:
printf ("28F320J3A\n");
break;
case FLASH_28F640J3A:
printf ("28F640J3A\n");
break;
case FLASH_28F128J3A:
printf ("28F128J3A\n");
break;
default:
printf ("Unknown Chip Type\n");
break;
}
printf (" Size: %ld MB in %d Sectors\n",
info->size >> 20, info->sector_count);
info->size >> 20, info->sector_count);
printf (" Sector Start Addresses:");
for (i=0; i<info->sector_count; ++i) {
for (i = 0; i < info->sector_count; ++i) {
if ((i % 5) == 0)
printf ("\n ");
printf (" %08lX%s",
info->start[i],
info->protect[i] ? " (RO)" : " "
);
info->protect[i] ? " (RO)" : " ");
}
printf ("\n");
return;
@ -192,49 +202,53 @@ void flash_print_info (flash_info_t *info)
* The following code cannot be run from FLASH!
*/
static ulong flash_get_size (FPW *addr, flash_info_t *info)
static ulong flash_get_size (FPW * addr, flash_info_t * info)
{
FPW value;
/* Write auto select command: read Manufacturer ID */
addr[0x5555] = (FPW)0x00AA00AA;
addr[0x2AAA] = (FPW)0x00550055;
addr[0x5555] = (FPW)0x00900090;
addr[0x5555] = (FPW) 0x00AA00AA;
addr[0x2AAA] = (FPW) 0x00550055;
addr[0x5555] = (FPW) 0x00900090;
value = addr[0];
switch (value) {
case (FPW)INTEL_MANUFACT:
info->flash_id = FLASH_MAN_INTEL;
break;
debug ("Manuf. ID @ 0x%08lx: 0x%08lx\n", (ulong)addr, value);
switch (value) {
case (FPW) INTEL_MANUFACT:
info->flash_id = FLASH_MAN_INTEL;
break;
default:
info->flash_id = FLASH_UNKNOWN;
info->sector_count = 0;
info->size = 0;
addr[0] = (FPW)0x00FF00FF; /* restore read mode */
return (0); /* no or unknown flash */
addr[0] = (FPW) 0x00FF00FF; /* restore read mode */
return (0); /* no or unknown flash */
}
value = addr[1]; /* device ID */
value = addr[1]; /* device ID */
debug ("Device ID @ 0x%08lx: 0x%08lx\n", (ulong)(&addr[1]), value);
switch (value) {
case (FPW)INTEL_ID_28F320J3A:
info->flash_id += FLASH_28F320J3A;
info->sector_count = 32;
info->size = 0x00400000;
break; /* => 4 MB */
switch (value) {
case (FPW) INTEL_ID_28F320J3A:
info->flash_id += FLASH_28F320J3A;
info->sector_count = 32;
info->size = 0x00400000;
break; /* => 4 MB */
case (FPW)INTEL_ID_28F640J3A:
info->flash_id += FLASH_28F640J3A;
info->sector_count = 64;
info->size = 0x00800000;
break; /* => 8 MB */
case (FPW) INTEL_ID_28F640J3A:
info->flash_id += FLASH_28F640J3A;
info->sector_count = 64;
info->size = 0x00800000;
break; /* => 8 MB */
case (FPW)INTEL_ID_28F128J3A:
info->flash_id += FLASH_28F128J3A;
info->sector_count = 128;
info->size = 0x01000000;
break; /* => 16 MB */
case (FPW) INTEL_ID_28F128J3A:
info->flash_id += FLASH_28F128J3A;
info->sector_count = 128;
info->size = 0x01000000;
break; /* => 16 MB */
default:
info->flash_id = FLASH_UNKNOWN;
@ -243,11 +257,11 @@ static ulong flash_get_size (FPW *addr, flash_info_t *info)
if (info->sector_count > CFG_MAX_FLASH_SECT) {
printf ("** ERROR: sector count %d > max (%d) **\n",
info->sector_count, CFG_MAX_FLASH_SECT);
info->sector_count, CFG_MAX_FLASH_SECT);
info->sector_count = CFG_MAX_FLASH_SECT;
}
addr[0] = (FPW)0x00FF00FF; /* restore read mode */
addr[0] = (FPW) 0x00FF00FF; /* restore read mode */
return (info->size);
}
@ -256,7 +270,7 @@ static ulong flash_get_size (FPW *addr, flash_info_t *info)
/*-----------------------------------------------------------------------
*/
int flash_erase (flash_info_t *info, int s_first, int s_last)
int flash_erase (flash_info_t * info, int s_first, int s_last)
{
int flag, prot, sect;
ulong type, start, now, last;
@ -279,7 +293,7 @@ int flash_erase (flash_info_t *info, int s_first, int s_last)
}
prot = 0;
for (sect=s_first; sect<=s_last; ++sect) {
for (sect = s_first; sect <= s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
@ -293,44 +307,44 @@ int flash_erase (flash_info_t *info, int s_first, int s_last)
}
start = get_timer (0);
last = start;
last = start;
/* Start erase on unprotected sectors */
for (sect = s_first; sect<=s_last; sect++) {
for (sect = s_first; sect <= s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
FPWV *addr = (FPWV *)(info->start[sect]);
FPWV *addr = (FPWV *) (info->start[sect]);
FPW status;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
flag = disable_interrupts ();
*addr = (FPW)0x00500050; /* clear status register */
*addr = (FPW)0x00200020; /* erase setup */
*addr = (FPW)0x00D000D0; /* erase confirm */
*addr = (FPW) 0x00500050; /* clear status register */
*addr = (FPW) 0x00200020; /* erase setup */
*addr = (FPW) 0x00D000D0; /* erase confirm */
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts();
enable_interrupts ();
/* wait at least 80us - let's wait 1 ms */
udelay (1000);
while (((status = *addr) & (FPW)0x00800080) != (FPW)0x00800080) {
if ((now=get_timer(start)) > CFG_FLASH_ERASE_TOUT) {
printf ("Timeout\n");
*addr = (FPW)0x00B000B0; /* suspend erase */
*addr = (FPW)0x00FF00FF; /* reset to read mode */
rcode = 1;
break;
}
/* show that we're waiting */
if ((now - last) > 1000) { /* every second */
putc ('.');
last = now;
}
while (((status = *addr) & (FPW) 0x00800080) != (FPW) 0x00800080) {
if ((now = get_timer (start)) > CFG_FLASH_ERASE_TOUT) {
printf ("Timeout\n");
*addr = (FPW) 0x00B000B0; /* suspend erase */
*addr = (FPW) 0x00FF00FF; /* reset to read mode */
rcode = 1;
break;
}
/* show that we're waiting */
if ((now - last) > 1000) { /* every second */
putc ('.');
last = now;
}
}
*addr = (FPW)0x00FF00FF; /* reset to read mode */
*addr = (FPW) 0x00FF00FF; /* reset to read mode */
}
}
printf (" done\n");
@ -345,15 +359,12 @@ int flash_erase (flash_info_t *info, int s_first, int s_last)
* 4 - Flash not identified
*/
int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt)
{
ulong cp, wp;
FPW data;
#if 0
int count, i, l, rc, port_width;
#else
int i, l, rc, port_width;
#endif
if (info->flash_id == FLASH_UNKNOWN) {
return 4;
@ -372,19 +383,19 @@ int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i=0, cp=wp; i<l; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
for (i = 0, cp = wp; i < l; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
for (; i<port_width && cnt>0; ++i) {
for (; i < port_width && cnt > 0; ++i) {
data = (data << 8) | *src++;
--cnt;
++cp;
}
for (; cnt==0 && i<port_width; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
for (; cnt == 0 && i < port_width; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
if ((rc = write_data(info, wp, data)) != 0) {
if ((rc = write_data (info, wp, data)) != 0) {
return (rc);
}
wp += port_width;
@ -393,26 +404,16 @@ int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
/*
* handle word aligned part
*/
#if 0
count = 0;
#endif
while (cnt >= port_width) {
data = 0;
for (i=0; i<port_width; ++i) {
for (i = 0; i < port_width; ++i) {
data = (data << 8) | *src++;
}
if ((rc = write_data(info, wp, data)) != 0) {
if ((rc = write_data (info, wp, data)) != 0) {
return (rc);
}
wp += port_width;
wp += port_width;
cnt -= port_width;
#if 0
if (count++ > 0x20000)
{
putc('.');
count = 0;
}
#endif
}
if (cnt == 0) {
@ -423,15 +424,15 @@ int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
* handle unaligned tail bytes
*/
data = 0;
for (i=0, cp=wp; i<port_width && cnt>0; ++i, ++cp) {
for (i = 0, cp = wp; i < port_width && cnt > 0; ++i, ++cp) {
data = (data << 8) | *src++;
--cnt;
}
for (; i<port_width; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
for (; i < port_width; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
return (write_data(info, wp, data));
return (write_data (info, wp, data));
}
/*-----------------------------------------------------------------------
@ -440,39 +441,38 @@ int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
* 1 - write timeout
* 2 - Flash not erased
*/
static int write_data (flash_info_t *info, ulong dest, FPW data)
static int write_data (flash_info_t * info, ulong dest, FPW data)
{
FPWV *addr = (FPWV *)dest;
FPWV *addr = (FPWV *) dest;
ulong status;
ulong start;
int flag;
/* Check if Flash is (sufficiently) erased */
if ((*addr & data) != data) {
printf("not erased at %08lx (%x)\n",(ulong)addr,*addr);
printf ("not erased at %08lx (%x)\n", (ulong) addr, *addr);
return (2);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
flag = disable_interrupts ();
*addr = (FPW)0x00400040; /* write setup */
*addr = (FPW) 0x00400040; /* write setup */
*addr = data;
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts();
enable_interrupts ();
start = get_timer (0);
while (((status = *addr) & (FPW)0x00800080) != (FPW)0x00800080) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
*addr = (FPW)0x00FF00FF; /* restore read mode */
while (((status = *addr) & (FPW) 0x00800080) != (FPW) 0x00800080) {
if (get_timer (start) > CFG_FLASH_WRITE_TOUT) {
*addr = (FPW) 0x00FF00FF; /* restore read mode */
return (1);
}
}
*addr = (FPW)0x00FF00FF; /* restore read mode */
*addr = (FPW) 0x00FF00FF; /* restore read mode */
return (0);
}

@ -374,4 +374,4 @@ void env_relocate_spec (void)
#endif /* ! ENV_IS_EMBEDDED || CFG_ENV_ADDR_REDUND */
}
#endif /* CFG_ENV_IS_IN_FLASH) */
#endif /* CFG_ENV_IS_IN_FLASH */

@ -27,13 +27,16 @@ LIB = lib$(CPU).a
START = start.S drivers/i2c/i2c2.o
OBJS = traps.o cpu.o cpu_init.o interrupts.o speed.o \
drivers/epic/epic1.o drivers/i2c/i2c1.o pci.o
drivers/epic/epic1.o drivers/i2c/i2c1.o pci.o bedbug_603e.o
all: .depend $(START) $(LIB)
$(LIB): $(OBJS)
$(AR) crv $@ $(OBJS) drivers/i2c/i2c2.o
bedbug_603e.c:
ln -s ../mpc8260/bedbug_603e.c bedbug_603e.c
#########################################################################
.depend: Makefile $(START:.o=.S) $(OBJS:.o=.c)

@ -336,7 +336,7 @@ _end_back:
STD_EXCEPTION(EXC_OFF_ITME, InstructionTransMiss, UnknownException)
STD_EXCEPTION(EXC_OFF_DLTME, DataLoadTransMiss, UnknownException)
STD_EXCEPTION(EXC_OFF_DSTME, DataStoreTransMiss, UnknownException)
STD_EXCEPTION(EXC_OFF_IABE, InstructionBreakpoint, UnknownException)
STD_EXCEPTION(EXC_OFF_IABE, InstructionBreakpoint, DebugException)
STD_EXCEPTION(EXC_OFF_SMIE, SysManageInt, UnknownException)
STD_EXCEPTION(0x1500, Reserved5, UnknownException)
STD_EXCEPTION(0x1600, Reserved6, UnknownException)

@ -176,6 +176,21 @@ UnknownException(struct pt_regs *regs)
_exception(0, regs);
}
#if (CONFIG_COMMANDS & CFG_CMD_BEDBUG)
extern void do_bedbug_breakpoint(struct pt_regs *);
#endif
void
DebugException(struct pt_regs *regs)
{
printf("Debugger trap at @ %lx\n", regs->nip );
show_regs(regs);
#if (CONFIG_COMMANDS & CFG_CMD_BEDBUG)
do_bedbug_breakpoint( regs );
#endif
}
/* Probe an address by reading. If not present, return -1, otherwise
* return 0.
*/

@ -26,7 +26,7 @@ include $(TOPDIR)/config.mk
LIB = lib$(CPU).a
START = start.o
OBJS = serial.o interrupts.o cpu.o
OBJS = serial.o interrupts.o cpu.o i2c.o
all: .depend $(START) $(LIB)

@ -0,0 +1,453 @@
/*
* (C) Copyright 2000
* Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
*
* (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* (C) Copyright 2003 Pengutronix e.K.
* Robert Schwebel <r.schwebel@pengutronix.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
* Back ported to the 8xx platform (from the 8260 platform) by
* Murray.Jensen@cmst.csiro.au, 27-Jan-01.
*/
/* FIXME: this file is PXA255 specific! What about other XScales? */
#include <common.h>
#ifdef CONFIG_HARD_I2C
/*
* - CFG_I2C_SPEED
* - I2C_PXA_SLAVE_ADDR
*/
#include <asm/arch/pxa-regs.h>
#include <i2c.h>
//#define DEBUG_I2C 1 /* activate local debugging output */
#define I2C_PXA_SLAVE_ADDR 0x1 /* slave pxa unit address */
#define I2C_ICR_INIT (ICR_BEIE | ICR_IRFIE | ICR_ITEIE | ICR_GCD | ICR_SCLE)
#define I2C_ISR_INIT 0x7FF
#ifdef DEBUG_I2C
#define PRINTD(x) printf x
#else
#define PRINTD(x)
#endif
/* Shall the current transfer have a start/stop condition? */
#define I2C_COND_NORMAL 0
#define I2C_COND_START 1
#define I2C_COND_STOP 2
/* Shall the current transfer be ack/nacked or being waited for it? */
#define I2C_ACKNAK_WAITACK 1
#define I2C_ACKNAK_SENDACK 2
#define I2C_ACKNAK_SENDNAK 4
/* Specify who shall transfer the data (master or slave) */
#define I2C_READ 0
#define I2C_WRITE 1
/* All transfers are described by this data structure */
struct i2c_msg {
u8 condition;
u8 acknack;
u8 direction;
u8 data;
};
/**
* i2c_pxa_reset: - reset the host controller
*
*/
static void i2c_reset( void )
{
ICR &= ~ICR_IUE; /* disable unit */
ICR |= ICR_UR; /* reset the unit */
udelay(100);
ICR &= ~ICR_IUE; /* disable unit */
CKEN |= CKEN14_I2C; /* set the global I2C clock on */
ISAR = I2C_PXA_SLAVE_ADDR; /* set our slave address */
ICR = I2C_ICR_INIT; /* set control register values */
ISR = I2C_ISR_INIT; /* set clear interrupt bits */
ICR |= ICR_IUE; /* enable unit */
udelay(100);
}
/**
* i2c_isr_set_cleared: - wait until certain bits of the I2C status register
* are set and cleared
*
* @return: 0 in case of success, 1 means timeout (no match within 10 ms).
*/
static int i2c_isr_set_cleared( unsigned long set_mask, unsigned long cleared_mask )
{
int timeout = 10000;
while( ((ISR & set_mask)!=set_mask) || ((ISR & cleared_mask)!=0) ){
udelay( 10 );
if( timeout-- < 0 ) return 0;
}
return 1;
}
/**
* i2c_transfer: - Transfer one byte over the i2c bus
*
* This function can tranfer a byte over the i2c bus in both directions.
* It is used by the public API functions.
*
* @return: 0: transfer successful
* -1: message is empty
* -2: transmit timeout
* -3: ACK missing
* -4: receive timeout
* -5: illegal parameters
* -6: bus is busy and couldn't be aquired
*/
int i2c_transfer(struct i2c_msg *msg)
{
int ret;
if (!msg)
goto transfer_error_msg_empty;
switch(msg->direction) {
case I2C_WRITE:
/* check if bus is not busy */
if (!i2c_isr_set_cleared(0,ISR_IBB))
goto transfer_error_bus_busy;
/* start transmission */
ICR &= ~ICR_START;
ICR &= ~ICR_STOP;
IDBR = msg->data;
if (msg->condition == I2C_COND_START) ICR |= ICR_START;
if (msg->condition == I2C_COND_STOP) ICR |= ICR_STOP;
if (msg->acknack == I2C_ACKNAK_SENDNAK) ICR |= ICR_ACKNAK;
if (msg->acknack == I2C_ACKNAK_SENDACK) ICR &= ~ICR_ACKNAK;
ICR &= ~ICR_ALDIE;
ICR |= ICR_TB;
/* transmit register empty? */
if (!i2c_isr_set_cleared(ISR_ITE,0))
goto transfer_error_transmit_timeout;
/* clear 'transmit empty' state */
ISR |= ISR_ITE;
/* wait for ACK from slave */
if (msg->acknack == I2C_ACKNAK_WAITACK)
if (!i2c_isr_set_cleared(0,ISR_ACKNAK))
goto transfer_error_ack_missing;
break;
case I2C_READ:
/* check if bus is not busy */
if (!i2c_isr_set_cleared(0,ISR_IBB))
goto transfer_error_bus_busy;
/* start receive */
ICR &= ~ICR_START;
ICR &= ~ICR_STOP;
if (msg->condition == I2C_COND_START) ICR |= ICR_START;
if (msg->condition == I2C_COND_STOP) ICR |= ICR_STOP;
if (msg->acknack == I2C_ACKNAK_SENDNAK) ICR |= ICR_ACKNAK;
if (msg->acknack == I2C_ACKNAK_SENDACK) ICR &= ~ICR_ACKNAK;
ICR &= ~ICR_ALDIE;
ICR |= ICR_TB;
/* receive register full? */
if (!i2c_isr_set_cleared(ISR_IRF,0))
goto transfer_error_receive_timeout;
msg->data = IDBR;
/* clear 'receive empty' state */
ISR |= ISR_IRF;
break;
default:
goto transfer_error_illegal_param;
}
return 0;
transfer_error_msg_empty:
PRINTD(("i2c_transfer: error: 'msg' is empty\n"));
ret = -1; goto i2c_transfer_finish;
transfer_error_transmit_timeout:
PRINTD(("i2c_transfer: error: transmit timeout\n"));
ret = -2; goto i2c_transfer_finish;
transfer_error_ack_missing:
PRINTD(("i2c_transfer: error: ACK missing\n"));
ret = -3; goto i2c_transfer_finish;
transfer_error_receive_timeout:
PRINTD(("i2c_transfer: error: receive timeout\n"));
ret = -4; goto i2c_transfer_finish;
transfer_error_illegal_param:
PRINTD(("i2c_transfer: error: illegal parameters\n"));
ret = -5; goto i2c_transfer_finish;
transfer_error_bus_busy:
PRINTD(("i2c_transfer: error: bus is busy\n"));
ret = -6; goto i2c_transfer_finish;
i2c_transfer_finish:
PRINTD(("i2c_transfer: ISR: 0x%04x\n",ISR));
i2c_reset();
return ret;
}
/* ------------------------------------------------------------------------ */
/* API Functions */
/* ------------------------------------------------------------------------ */
void i2c_init(int speed, int slaveaddr)
{
}
/**
* i2c_probe: - Test if a chip answers for a given i2c address
*
* @chip: address of the chip which is searched for
* @return: 0 if a chip was found, -1 otherwhise
*/
int i2c_probe(uchar chip)
{
struct i2c_msg msg;
i2c_reset();
msg.condition = I2C_COND_START;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = (chip << 1) + 1;
if (i2c_transfer(&msg)) return -1;
msg.condition = I2C_COND_STOP;
msg.acknack = I2C_ACKNAK_SENDNAK;
msg.direction = I2C_READ;
msg.data = 0x00;
if (i2c_transfer(&msg)) return -1;
return 0;
}
/**
* i2c_read: - Read multiple bytes from an i2c device
*
* The higher level routines take into account that this function is only
* called with len < page length of the device (see configuration file)
*
* @chip: address of the chip which is to be read
* @addr: i2c data address within the chip
* @alen: length of the i2c data address (1..2 bytes)
* @buffer: where to write the data
* @len: how much byte do we want to read
* @return: 0 in case of success
*/
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
struct i2c_msg msg;
u8 addr_bytes[3]; /* lowest...highest byte of data address */
int ret;
PRINTD(("i2c_read(chip=0x%02x, addr=0x%02x, alen=0x%02x, len=0x%02x)\n",chip,addr,alen,len));
i2c_reset();
/* dummy chip address write */
PRINTD(("i2c_read: dummy chip address write\n"));
msg.condition = I2C_COND_START;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = (chip << 1);
msg.data &= 0xFE;
if ((ret=i2c_transfer(&msg))) return -1;
/*
* send memory address bytes;
* alen defines how much bytes we have to send.
*/
//addr &= ((1 << CFG_EEPROM_PAGE_WRITE_BITS)-1);
addr_bytes[0] = (u8)((addr >> 0) & 0x000000FF);
addr_bytes[1] = (u8)((addr >> 8) & 0x000000FF);
addr_bytes[2] = (u8)((addr >> 16) & 0x000000FF);
while (--alen >= 0) {
PRINTD(("i2c_read: send memory word address byte %1d\n",alen));
msg.condition = I2C_COND_NORMAL;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = addr_bytes[alen];
if ((ret=i2c_transfer(&msg))) return -1;
}
/* start read sequence */
PRINTD(("i2c_read: start read sequence\n"));
msg.condition = I2C_COND_START;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = (chip << 1);
msg.data |= 0x01;
if ((ret=i2c_transfer(&msg))) return -1;
/* read bytes; send NACK at last byte */
while (len--) {
if (len==0) {
msg.condition = I2C_COND_STOP;
msg.acknack = I2C_ACKNAK_SENDNAK;
} else {
msg.condition = I2C_COND_NORMAL;
msg.acknack = I2C_ACKNAK_SENDACK;
}
msg.direction = I2C_READ;
msg.data = 0x00;
if ((ret=i2c_transfer(&msg))) return -1;
*(buffer++) = msg.data;
PRINTD(("i2c_read: reading byte (0x%08x)=0x%02x\n",(unsigned int)buffer,*buffer));
}
i2c_reset();
return 0;
}
/**
* i2c_write: - Write multiple bytes to an i2c device
*
* The higher level routines take into account that this function is only
* called with len < page length of the device (see configuration file)
*
* @chip: address of the chip which is to be written
* @addr: i2c data address within the chip
* @alen: length of the i2c data address (1..2 bytes)
* @buffer: where to find the data to be written
* @len: how much byte do we want to read
* @return: 0 in case of success
*/
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
struct i2c_msg msg;
u8 addr_bytes[3]; /* lowest...highest byte of data address */
PRINTD(("i2c_write(chip=0x%02x, addr=0x%02x, alen=0x%02x, len=0x%02x)\n",chip,addr,alen,len));
i2c_reset();
/* chip address write */
PRINTD(("i2c_write: chip address write\n"));
msg.condition = I2C_COND_START;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = (chip << 1);
msg.data &= 0xFE;
if (i2c_transfer(&msg)) return -1;
/*
* send memory address bytes;
* alen defines how much bytes we have to send.
*/
addr_bytes[0] = (u8)((addr >> 0) & 0x000000FF);
addr_bytes[1] = (u8)((addr >> 8) & 0x000000FF);
addr_bytes[2] = (u8)((addr >> 16) & 0x000000FF);
while (--alen >= 0) {
PRINTD(("i2c_write: send memory word address\n"));
msg.condition = I2C_COND_NORMAL;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = addr_bytes[alen];
if (i2c_transfer(&msg)) return -1;
}
/* write bytes; send NACK at last byte */
while (len--) {
PRINTD(("i2c_write: writing byte (0x%08x)=0x%02x\n",(unsigned int)buffer,*buffer));
if (len==0)
msg.condition = I2C_COND_STOP;
else
msg.condition = I2C_COND_NORMAL;
msg.acknack = I2C_ACKNAK_WAITACK;
msg.direction = I2C_WRITE;
msg.data = *(buffer++);
if (i2c_transfer(&msg)) return -1;
}
i2c_reset();
return 0;
}
uchar i2c_reg_read (uchar chip, uchar reg)
{
PRINTD(("i2c_reg_read(chip=0x%02x, reg=0x%02x)\n",chip,reg));
return 0;
}
void i2c_reg_write(uchar chip, uchar reg, uchar val)
{
PRINTD(("i2c_reg_write(chip=0x%02x, reg=0x%02x, val=0x%02x)\n",chip,reg,val));
}
#endif /* CONFIG_HARD_I2C */

@ -0,0 +1,732 @@
Power-On-Self-Test support in U-Boot
------------------------------------
This project is to support Power-On-Self-Test (POST) in U-Boot.
1. High-level requirements
The key rquirements for this project are as follows:
1) The project shall develop a flexible framework for implementing
and running Power-On-Self-Test in U-Boot. This framework shall
possess the following features:
o) Extensibility
The framework shall allow adding/removing/replacing POST tests.
Also, standalone POST tests shall be supported.
o) Configurability
The framework shall allow run-time configuration of the lists
of tests running on normal/power-fail booting.
o) Controllability
The framework shall support manual running of the POST tests.
2) The results of tests shall be saved so that it will be possible to
retrieve them from Linux.
3) The following POST tests shall be developed for MPC823E-based
boards:
o) CPU test
o) Cache test
o) Memory test
o) Ethernet test
o) Serial channels test
o) Watchdog timer test
o) RTC test
o) I2C test
o) SPI test
o) USB test
4) The LWMON board shall be used for reference.
2. Design
This section details the key points of the design for the project.
The whole project can be divided into two independent tasks:
enhancing U-Boot/Linux to provide a common framework for running POST
tests and developing such tests for particular hardware.
2.1. Hardware-independent POST layer
A new optional module will be added to U-Boot, which will run POST
tests and collect their results at boot time. Also, U-Boot will
support running POST tests manually at any time by executing a
special command from the system console.
The list of available POST tests will be configured at U-Boot build
time. The POST layer will allow the developer to add any custom POST
tests. All POST tests will be divided into the following groups:
1) Tests running on power-on booting only
This group will contain those tests that run only once on
power-on reset (e.g. watchdog test)
2) Tests running on normal booting only
This group will contain those tests that do not take much
time and can be run on the regular basis (e.g. CPU test)
3) Tests running on power-fail booting only
This group will contain POST tests that consume much time
and cannot be run regularly (e.g. I2C test)
4) Manually executed tests
This group will contain those tests that can be run manually.
If necessary, some tests may belong to several groups simultaneously.
For example, SDRAM test may run on both noarmal and power-fail
booting. On normal booting, SDRAM test may perform a fast superficial
memory test only, while running on power-fail booting it may perform
a full memory check-up.
Also, all tests will be discriminated by the moment they run at.
Specifically, the following groups will be singled out:
1) Tests running before relocating to RAM
These tests will run immediatelly after initializing RAM
as to enable modifying it without taking care of its
contents. Basically, this group will contain memory tests
only.
2) Tests running after relocating to RAM
These tests will run immediately before entering the main
loop as to guarantee full hardware initialization.
The POST layer will also distinguish a special group of tests that
may cause system rebooting (e.g. watchdog test). For such tests, the
layer will automatically detect rebooting and will notify the test
about it.
2.1.1. POST layer interfaces
This section details the interfaces between the POST layer and the
rest of U-Boot.
The following flags will be defined:
#define POST_ROM 0x01 /* test runs in ROM */
#define POST_RAM 0x02 /* test runs in RAM */
#define POST_POWERON 0x04 /* test runs on power-on booting */
#define POST_NORMAL 0x08 /* test runs on normal booting */
#define POST_SHUTDOWN 0x10 /* test runs on power-fail booting */
#define POST_MANUAL 0x20 /* test can be executed manually */
#define POST_REBOOT 0x80 /* test may cause rebooting */
The POST layer will export the following interface routines:
o) int post_run(bd_t *bd, char *name, int flags);
This routine will run the test (or the group of tests) specified
by the name and flag arguments. More specifically, if the name
argument is not NULL, the test with this name will be performed,
otherwise all tests running in ROM/RAM (depending on the flag
argument) will be executed. This routine will be called at least
twice with name set to NULL, once from board_init_f() and once
from board_init_r(). The flags argument will also specify the
mode the test is executed in (power-on, normal, power-fail,
manual).
o) void post_reloc(ulong offset);
This routine will be called from board_init_r() and will
relocate the POST test table.
o) int post_info(char *name);
This routine will print the list of all POST tests that can be
executed manually if name is NULL, and the description of a
particular test if name is not NULL.
o) int post_log(char *format, ...);
This routine will be called from POST tests to log their
results. Basically, this routine will print the results to
stderr. The format of the arguments and the return value
will be identical to the printf() routine.
Also, the following board-specific routines will be called from the
U-Boot common code:
o) int board_power_mode(void)
This routine will return the mode the system is running in
(POST_POWERON, POST_NORMAL or POST_SHUTDOWN).
o) void board_poweroff(void)
This routine will turn off the power supply of the board. It
will be called on power-fail booting after running all POST
tests.
The list of available POST tests be kept in the post_tests array
filled at U-Boot build time. The format of entry in this array will
be as follows:
struct post_test {
char *name;
char *cmd;
char *desc;
int flags;
int (*test)(bd_t *bd, int flags);
};
o) name
This field will contain a short name of the test, which will be
used in logs and on listing POST tests (e.g. CPU test).
o) cmd
This field will keep a name for identifying the test on manual
testing (e.g. cpu). For more information, refer to section
"Command line interface".
o) desc
This field will contain a detailed description of the test,
which will be printed on user request. For more information, see
section "Command line interface".
o) flags
This field will contain a combination of the bit flags described
above, which will specify the mode the test is running in
(power-on, normal, power-fail or manual mode), the moment it
should be run at (before or after relocating to RAM), whether it
can cause system rebooting or not.
o) test
This field will contain a pointer to the routine that will
perform the test, which will take 2 arguments. The first
argument will be a pointer to the board info structure, while
the second will be a combination of bit flags specifying the
mode the test is running in (POST_POWERON, POST_NORMAL,
POST_POWERFAIL, POST_MANUAL) and whether the last execution of
the test caused system rebooting (POST_REBOOT). The routine will
return 0 on successful execution of the test, and 1 if the test
failed.
The lists of the POST tests that should be run at power-on/normal/
power-fail booting will be kept in the environment. Namely, the
following environment variables will be used: post_poweron,
powet_normal, post_shutdown.
2.1.2. Test results
The results of tests will be collected by the POST layer. The POST
log will have the following format:
...
--------------------------------------------
START <name>
<test-specific output>
[PASSED|FAILED]
--------------------------------------------
...
Basically, the results of tests will be printed to stderr. This
feature may be enhanced in future to spool the log to a serial line,
save it in non-volatile RAM (NVRAM), transfer it to a dedicated
storage server and etc.
2.1.3. Integration issues
All POST-related code will be #ifdef'ed with the CONFIG_POST macro.
This macro will be defined in the config_<board>.h file for those
boards that need POST. The CONFIG_POST macro will contain the list of
POST tests for the board. The macro will have the format of array
composed of post_test structures:
#define CONFIG_POST \
{
"On-board peripherals test", "board", \
" This test performs full check-up of the " \
"on-board hardware.", \
POST_RAM | POST_POWERFAIL, \
&board_post_test \
}
A new file, post.h, will be created in the include/ directory. This
file will contain common POST declarations and will define a set of
macros that will be reused for defining CONFIG_POST. As an example,
the following macro may be defined:
#define POST_CACHE \
{
"Cache test", "cache", \
" This test verifies the CPU cache operation.", \
POST_RAM | POST_NORMAL, \
&cache_post_test \
}
A new subdirectory will be created in the U-Boot root directory. It
will contain the source code of the POST layer and most of POST
tests. Each POST test in this directory will be placed into a
separate file (it will be needed for building standalone tests). Some
POST tests (mainly those for testing peripheral devices) will be
located in the source files of the drivers for those devices. This
way will be used only if the test subtantially uses the driver.
2.1.4. Standalone tests
The POST framework will allow to develop and run standalone tests. A
user-space library will be developed to provide the POST interface
functions to standalone tests.
2.1.5. Command line interface
A new command, diag, will be added to U-Boot. This command will be
used for listing all available hardware tests, getting detailed
descriptions of them and running these tests.
More specifically, being run without any arguments, this command will
print the list of all available hardware tests:
=> diag
Available hardware tests:
cache - cache test
cpu - CPU test
enet - SCC/FCC ethernet test
Use 'diag [<test1> [<test2>]] ... ' to get more info.
Use 'diag run [<test1> [<test2>]] ... ' to run tests.
=>
If the first argument to the diag command is not 'run', detailed
descriptions of the specified tests will be printed:
=> diag cpu cache
cpu - CPU test
This test verifies the arithmetic logic unit of CPU.
cache - cache test
This test verifies the CPU cache operation.
=>
If the first argument to diag is 'run', the specified tests will be
executed. If no tests are specified, all available tests will be
executed.
It will be prohibited to execute tests running in ROM manually. The
'diag' command will not display such tests and/or run them.
2.1.6. Power failure handling
The Linux kernel will be modified to detect power failures and
automatically reboot the system in such cases. It will be assumed
that the power failure causes a system interrupt.
To perform correct system shutdown, the kernel will register a
handler of the power-fail IRQ on booting. Being called, the handler
will run /sbin/reboot using the call_usermodehelper() routine.
/sbin/reboot will automatically bring the system down in a secure
way. This feature will be configured in/out from the kernel
configuration file.
The POST layer of U-Boot will check whether the system runs in
power-fail mode. If it does, the system will be powered off after
executing all hardware tests.
2.1.7. Hazardous tests
Some tests may cause system rebooting during their execution. For
some tests, this will indicate a failure, while for the Watchdog
test, this means successful operation of the timer.
In order to support such tests, the following scheme will be
implemented. All the tests that may cause system rebooting will have
the POST_REBOOT bit flag set in the flag field of the correspondent
post_test structure. Before starting tests marked with this bit flag,
the POST layer will store an identification number of the test in a
location in IMMR. On booting, the POST layer will check the value of
this variable and if it is set will skip over the tests preceding the
failed one. On second execution of the failed test, the POST_REBOOT
bit flag will be set in the flag argument to the test routine. This
will allow to detect system rebooting on the previous iteration. For
example, the watchdog timer test may have the following
declaration/body:
...
#define POST_WATCHDOG \
{
"Watchdog timer test", "watchdog", \
" This test checks the watchdog timer.", \
POST_RAM | POST_POWERON | POST_REBOOT, \
&watchdog_post_test \
}
...
...
int watchdog_post_test(bd_t *bd, int flags)
{
unsigned long start_time;
if (flags & POST_REBOOT) {
/* Test passed */
return 0;
} else {
/* disable interrupts */
disable_interrupts();
/* 10-second delay */
...
/* if we've reached this, the watchdog timer does not work */
enable_interrupts();
return 1;
}
}
...
2.2. Hardware-specific details
This project will also develop a set of POST tests for MPC8xx- based
systems. This section provides technical details of how it will be
done.
2.2.1. Generic PPC tests
The following generic POST tests will be developed:
o) CPU test
This test will check the arithmetic logic unit (ALU) of CPU. The
test will take several milliseconds and will run on normal
booting.
o) Cache test
This test will verify the CPU cache (L1 cache). The test will
run on normal booting.
o) Memory test
This test will examine RAM and check it for errors. The test
will always run on booting. On normal booting, only a limited
amount of RAM will be checked. On power-fail booting a fool
memory check-up will be performed.
2.2.1.1. CPU test
This test will verify the following ALU instructions:
o) Condition register istructions
This group will contain: mtcrf, mfcr, mcrxr, crand, crandc,
cror, crorc, crxor, crnand, crnor, creqv, mcrf.
The mtcrf/mfcr instructions will be tested by loading different
values into the condition register (mtcrf), moving its value to
a general-purpose register (mfcr) and comparing this value with
the expected one. The mcrxr instruction will be tested by
loading a fixed value into the XER register (mtspr), moving XER
value to the condition register (mcrxr), moving it to a
general-purpose register (mfcr) and comparing the value of this
register with the expected one. The rest of instructions will be
tested by loading a fixed value into the condition register
(mtcrf), executing each instruction several times to modify all
4-bit condition fields, moving the value of the conditional
register to a general-purpose register (mfcr) and comparing it
with the expected one.
o) Integer compare instructions
This group will contain: cmp, cmpi, cmpl, cmpli.
To verify these instructions the test will run them with
different combinations of operands, read the condition register
value and compare it with the expected one. More specifically,
the test will contain a pre-built table containing the
description of each test case: the instruction, the values of
the operands, the condition field to save the result in and the
expected result.
o) Arithmetic instructions
This group will contain: add, addc, adde, addme, addze, subf,
subfc, subfe, subme, subze, mullw, mulhw, mulhwu, divw, divwu,
extsb, extsh.
The test will contain a pre-built table of instructions,
operands, expected results and expected states of the condition
register. For each table entry, the test will cyclically use
different sets of operand registers and result registers. For
example, for instructions that use 3 registers on the first
iteration r0/r1 will be used as operands and r2 for result. On
the second iteration, r1/r2 will be used as operands and r3 as
for result and so on. This will enable to verify all
general-purpose registers.
o) Logic instructions
This group will contain: and, andc, andi, andis, or, orc, ori,
oris, xor, xori, xoris, nand, nor, neg, eqv, cntlzw.
The test scheme will be identical to that from the previous
point.
o) Shift instructions
This group will contain: slw, srw, sraw, srawi, rlwinm, rlwnm,
rlwimi
The test scheme will be identical to that from the previous
point.
o) Branch instructions
This group will contain: b, bl, bc.
The first 2 instructions (b, bl) will be verified by jumping to
a fixed address and checking whether control was transfered to
that very point. For the bl instruction the value of the link
register will be checked as well (using mfspr). To verify the bc
instruction various combinations of the BI/BO fields, the CTR
and the condition register values will be checked. The list of
such combinations will be pre-built and linked in U-Boot at
build time.
o) Load/store instructions
This group will contain: lbz(x)(u), lhz(x)(u), lha(x)(u),
lwz(x)(u), stb(x)(u), sth(x)(u), stw(x)(u).
All operations will be performed on a 16-byte array. The array
will be 4-byte aligned. The base register will point to offset
8. The immediate offset (index register) will range in [-8 ...
+7]. The test cases will be composed so that they will not cause
alignment exceptions. The test will contain a pre-built table
describing all test cases. For store instructions, the table
entry will contain: the instruction opcode, the value of the
index register and the value of the source register. After
executing the instruction, the test will verify the contents of
the array and the value of the base register (it must change for
"store with update" instructions). For load instructions, the
table entry will contain: the instruction opcode, the array
contents, the value of the index register and the expected value
of the destination register. After executing the instruction,
the test will verify the value of the destination register and
the value of the base register (it must change for "load with
update" instructions).
o) Load/store multiple/string instructions
The CPU test will run in RAM in order to allow run-time modification
of the code to reduce the memory footprint.
2.2.1.2 Special-Purpose Registers Tests
TBD.
2.2.1.3. Cache test
To verify the data cache operation the following test scenarios will
be used:
1) Basic test #1
- turn on the data cache
- switch the data cache to write-back or write-through mode
- invalidate the data cache
- write the negative pattern to a cached area
- read the area
The negative pattern must be read at the last step
2) Basic test #2
- turn on the data cache
- switch the data cache to write-back or write-through mode
- invalidate the data cache
- write the zero pattern to a cached area
- turn off the data cache
- write the negative pattern to the area
- turn on the data cache
- read the area
The negative pattern must be read at the last step
3) Write-through mode test
- turn on the data cache
- switch the data cache to write-through mode
- invalidate the data cache
- write the zero pattern to a cached area
- flush the data cache
- write the negative pattern to the area
- turn off the data cache
- read the area
The negative pattern must be read at the last step
4) Write-back mode test
- turn on the data cache
- switch the data cache to write-back mode
- invalidate the data cache
- write the negative pattern to a cached area
- flush the data cache
- write the zero pattern to the area
- invalidate the data cache
- read the area
The negative pattern must be read at the last step
To verify the instruction cache operation the following test
scenarios will be used:
1) Basic test #1
- turn on the instruction cache
- unlock the entire instruction cache
- invalidate the instruction cache
- lock a branch instruction in the instruction cache
- replace the branch instruction with "nop"
- jump to the branch instruction
- check that the branch instruction was executed
2) Basic test #2
- turn on the instruction cache
- unlock the entire instruction cache
- invalidate the instruction cache
- jump to a branch instruction
- check that the branch instruction was executed
- replace the branch instruction with "nop"
- invalidate the instruction cache
- jump to the branch instruction
- check that the "nop" instruction was executed
The CPU test will run in RAM in order to allow run-time modification
of the code.
2.2.1.4. Memory test
The memory test will verify RAM using sequential writes and reads
to/from RAM. Specifically, there will be several test cases that will
use different patterns to verify RAM. Each test case will first fill
a region of RAM with one pattern and then read the region back and
compare its contents with the pattern. The following patterns will be
used:
1) zero pattern (0x00000000)
2) negative pattern (0xffffffff)
3) checkerboard pattern (0x55555555, 0xaaaaaaaa)
4) bit-flip pattern ((1 << (offset % 32)), ~(1 << (offset % 32)))
5) address pattern (offset, ~offset)
Patterns #1, #2 will help to find unstable bits. Patterns #3, #4 will
be used to detect adherent bits, i.e. bits whose state may randomly
change if adjacent bits are modified. The last pattern will be used
to detect far-located errors, i.e. situations when writing to one
location modifies an area located far from it. Also, usage of the
last pattern will help to detect memory controller misconfigurations
when RAM represents a cyclically repeated portion of a smaller size.
Being run in normal mode, the test will verify only small 4Kb regions
of RAM around each 1Mb boundary. For example, for 64Mb RAM the
following areas will be verified: 0x00000000-0x00000800,
0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
0x04000000. If the test is run in power-fail mode, it will verify the
whole RAM.
The memory test will run in ROM before relocating U-Boot to RAM in
order to allow RAM modification without saving its contents.
2.2.2. Common tests
This section describes tests that are not based on any hardware
peculiarities and use common U-Boot interfaces only. These tests do
not need any modifications for porting them to another board/CPU.
2.2.2.1. I2C test
For verifying the I2C bus, a full I2C bus scanning will be performed
using the i2c_probe() routine. If any I2C device is found, the test
will be considered as passed, otherwise failed. This particular way
will be used because it provides the most common method of testing.
For example, using the internal loopback mode of the CPM I2C
controller for testing would not work on boards where the software
I2C driver (also known as bit-banged driver) is used.
2.2.2.2. Watchdog timer test
To test the watchdog timer the scheme mentioned above (refer to
section "Hazardous tests") will be used. Namely, this test will be
marked with the POST_REBOOT bit flag. On the first iteration, the
test routine will make a 10-second delay. If the system does not
reboot during this delay, the watchdog timer is not operational and
the test fails. If the system reboots, on the second iteration the
POST_REBOOT bit will be set in the flag argument to the test routine.
The test routine will check this bit and report a success if it is
set.
2.2.2.3. RTC test
The RTC test will use the rtc_get()/rtc_set() routines. The following
features will be verified:
o) Time uniformity
This will be verified by reading RTC in polling within a short
period of time (5-10 seconds).
o) Passing month boundaries
This will be checked by setting RTC to a second before a month
boundary and reading it after its passing the boundary. The test
will be performed for both leap- and nonleap-years.
2.2.3. MPC8xx peripherals tests
This project will develop a set of tests verifying the peripheral
units of MPC8xx processors. Namely, the following controllers of the
MPC8xx communication processor module (CPM) will be tested:
o) Serial Management Controllers (SMC)
o) Serial Communication Controllers (SCC)
2.2.3.1. Ethernet tests (SCC)
The internal (local) loopback mode will be used to test SCC. To do
that the controllers will be configured accordingly and several
packets will be transmitted. These tests may be enhanced in future to
use external loopback for testing. That will need appropriate
reconfiguration of the physical interface chip.
The test routines for the SCC ethernet tests will be located in
cpu/mpc8xx/scc.c.
2.2.3.2. UART tests (SMC/SCC)
To perform these tests the internal (local) loopback mode will be
used. The SMC/SCC controllers will be configured to connect the
transmitter output to the receiver input. After that, several bytes
will be transmitted. These tests may be enhanced to make to perform
"external" loopback test using a loopback cable. In this case, the
test will be executed manually.
The test routine for the SMC/SCC UART tests will be located in
cpu/mpc8xx/serial.c.
2.2.3.3. USB test
TBD
2.2.3.4. SPI test
TBD
2.3. Design notes
Currently it is unknown how we will power off the board after running
all power-fail POST tests. This point needs further clarification.

@ -10,6 +10,8 @@
* published by the Free Software Foundation.
*/
#ifndef PXA_REGS_H
#define PXA_REGS_H 1
/* FIXME hack so that SA-1111.h will work [cb] */
@ -425,6 +427,38 @@ typedef void (*ExcpHndlr) (void) ;
#define ISR __REG(0x40301698) /* I2C Status Register - ISR */
#define ISAR __REG(0x403016A0) /* I2C Slave Address Register - ISAR */
/* ----- Control register bits ---------------------------------------- */
#define ICR_START 0x1 /* start bit */
#define ICR_STOP 0x2 /* stop bit */
#define ICR_ACKNAK 0x4 /* send ACK(0) or NAK(1) */
#define ICR_TB 0x8 /* transfer byte bit */
#define ICR_MA 0x10 /* master abort */
#define ICR_SCLE 0x20 /* master clock enable */
#define ICR_IUE 0x40 /* unit enable */
#define ICR_GCD 0x80 /* general call disable */
#define ICR_ITEIE 0x100 /* enable tx interrupts */
#define ICR_IRFIE 0x200 /* enable rx interrupts */
#define ICR_BEIE 0x400 /* enable bus error ints */
#define ICR_SSDIE 0x800 /* slave STOP detected int enable */
#define ICR_ALDIE 0x1000 /* enable arbitration interrupt */
#define ICR_SADIE 0x2000 /* slave address detected int enable */
#define ICR_UR 0x4000 /* unit reset */
/* ----- Status register bits ----------------------------------------- */
#define ISR_RWM 0x1 /* read/write mode */
#define ISR_ACKNAK 0x2 /* ack/nak status */
#define ISR_UB 0x4 /* unit busy */
#define ISR_IBB 0x8 /* bus busy */
#define ISR_SSD 0x10 /* slave stop detected */
#define ISR_ALD 0x20 /* arbitration loss detected */
#define ISR_ITE 0x40 /* tx buffer empty */
#define ISR_IRF 0x80 /* rx buffer full */
#define ISR_GCAD 0x100 /* general call address detected */
#define ISR_SAD 0x200 /* slave address detected */
#define ISR_BED 0x400 /* bus error no ACK/NAK */
/*
* Serial Audio Controller
@ -1128,6 +1162,6 @@ typedef void (*ExcpHndlr) (void) ;
#define MCIO1_OFFSET 0x3C
#define MDMRS_OFFSET 0x40
#endif /* PXA_REGS_H */

@ -1,15 +1,23 @@
/*
* linux/include/asm-arm/arch-pxa/pxa-regs.h
*
*
* Author: Nicolas Pitre
* Created: Jun 15, 2001
* Copyright: MontaVista Software Inc.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* - 2003/01/20: Robert Schwebel <r.schwebel@pengutronix.de
* Original file taken from linux-2.4.19-rmk4-pxa1. Added some definitions.
* Added include for hardware.h (for __REG definition)
*/
#ifndef _PXA_REGS_H_
#define _PXA_REGS_H_
#include "bitfield.h"
#include "hardware.h"
/* FIXME hack so that SA-1111.h will work [cb] */
@ -22,13 +30,6 @@ typedef void *Address ;
typedef void (*ExcpHndlr) (void) ;
#endif
#ifndef __ASSEMBLY__
#define io_p2v(PhAdd) (PhAdd)
#define __REG(x) (*((volatile u32 *)io_p2v(x)))
#else
#define __REG(x) (x)
#endif
/*
* PXA Chip selects
*/
@ -369,7 +370,7 @@ typedef void (*ExcpHndlr) (void) ;
#define LSR_OE (1 << 1) /* Overrun Error */
#define LSR_DR (1 << 0) /* Data Ready */
#define MCR_LOOP (1 << 4) */
#define MCR_LOOP (1 << 4) */
#define MCR_OUT2 (1 << 3) /* force MSR_DCD in loopback mode */
#define MCR_OUT1 (1 << 2) /* force MSR_RI in loopback mode */
#define MCR_RTS (1 << 1) /* Request to Send */
@ -414,7 +415,6 @@ typedef void (*ExcpHndlr) (void) ;
IrSR_RCVEIR_UART_MODE | \
IrSR_XMITIR_IR_MODE)
/*
* I2C registers
*/
@ -425,6 +425,38 @@ typedef void (*ExcpHndlr) (void) ;
#define ISR __REG(0x40301698) /* I2C Status Register - ISR */
#define ISAR __REG(0x403016A0) /* I2C Slave Address Register - ISAR */
/* ----- Control register bits ---------------------------------------- */
#define ICR_START 0x1 /* start bit */
#define ICR_STOP 0x2 /* stop bit */
#define ICR_ACKNAK 0x4 /* send ACK(0) or NAK(1) */
#define ICR_TB 0x8 /* transfer byte bit */
#define ICR_MA 0x10 /* master abort */
#define ICR_SCLE 0x20 /* master clock enable */
#define ICR_IUE 0x40 /* unit enable */
#define ICR_GCD 0x80 /* general call disable */
#define ICR_ITEIE 0x100 /* enable tx interrupts */
#define ICR_IRFIE 0x200 /* enable rx interrupts */
#define ICR_BEIE 0x400 /* enable bus error ints */
#define ICR_SSDIE 0x800 /* slave STOP detected int enable */
#define ICR_ALDIE 0x1000 /* enable arbitration interrupt */
#define ICR_SADIE 0x2000 /* slave address detected int enable */
#define ICR_UR 0x4000 /* unit reset */
#define ICR_FM 0x8000 /* Fast Mode */
/* ----- Status register bits ----------------------------------------- */
#define ISR_RWM 0x1 /* read/write mode */
#define ISR_ACKNAK 0x2 /* ack/nak status */
#define ISR_UB 0x4 /* unit busy */
#define ISR_IBB 0x8 /* bus busy */
#define ISR_SSD 0x10 /* slave stop detected */
#define ISR_ALD 0x20 /* arbitration loss detected */
#define ISR_ITE 0x40 /* tx buffer empty */
#define ISR_IRF 0x80 /* rx buffer full */
#define ISR_GCAD 0x100 /* general call address detected */
#define ISR_SAD 0x200 /* slave address detected */
#define ISR_BED 0x400 /* bus error no ACK/NAK */
/*
* Serial Audio Controller
@ -524,24 +556,92 @@ typedef void (*ExcpHndlr) (void) ;
/*
* USB Device Controller
*/
#define UDC_RES1 __REG(0x40600004) /* UDC Undocumented - Reserved1 */
#define UDC_RES2 __REG(0x40600008) /* UDC Undocumented - Reserved2 */
#define UDC_RES3 __REG(0x4060000C) /* UDC Undocumented - Reserved3 */
#define UDCCR __REG(0x40600000) /* UDC Control Register */
#define UDCCR_UDE (1 << 0) /* UDC enable */
#define UDCCR_UDA (1 << 1) /* UDC active */
#define UDCCR_RSM (1 << 2) /* Device resume */
#define UDCCR_RESIR (1 << 3) /* Resume interrupt request */
#define UDCCR_SUSIR (1 << 4) /* Suspend interrupt request */
#define UDCCR_SRM (1 << 5) /* Suspend/resume interrupt mask */
#define UDCCR_RSTIR (1 << 6) /* Reset interrupt request */
#define UDCCR_REM (1 << 7) /* Reset interrupt mask */
#define UDCCS0 __REG(0x40600010) /* UDC Endpoint 0 Control/Status Register */
#define UDCCS0_OPR (1 << 0) /* OUT packet ready */
#define UDCCS0_IPR (1 << 1) /* IN packet ready */
#define UDCCS0_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS0_DRWF (1 << 3) /* Device remote wakeup feature */
#define UDCCS0_SST (1 << 4) /* Sent stall */
#define UDCCS0_FST (1 << 5) /* Force stall */
#define UDCCS0_RNE (1 << 6) /* Receive FIFO no empty */
#define UDCCS0_SA (1 << 7) /* Setup active */
/* Bulk IN - Endpoint 1,6,11 */
#define UDCCS1 __REG(0x40600014) /* UDC Endpoint 1 (IN) Control/Status Register */
#define UDCCS2 __REG(0x40600018) /* UDC Endpoint 2 (OUT) Control/Status Register */
#define UDCCS3 __REG(0x4060001C) /* UDC Endpoint 3 (IN) Control/Status Register */
#define UDCCS4 __REG(0x40600020) /* UDC Endpoint 4 (OUT) Control/Status Register */
#define UDCCS5 __REG(0x40600024) /* UDC Endpoint 5 (Interrupt) Control/Status Register */
#define UDCCS6 __REG(0x40600028) /* UDC Endpoint 6 (IN) Control/Status Register */
#define UDCCS7 __REG(0x4060002C) /* UDC Endpoint 7 (OUT) Control/Status Register */
#define UDCCS8 __REG(0x40600030) /* UDC Endpoint 8 (IN) Control/Status Register */
#define UDCCS9 __REG(0x40600034) /* UDC Endpoint 9 (OUT) Control/Status Register */
#define UDCCS10 __REG(0x40600038) /* UDC Endpoint 10 (Interrupt) Control/Status Register */
#define UDCCS11 __REG(0x4060003C) /* UDC Endpoint 11 (IN) Control/Status Register */
#define UDCCS_BI_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_BI_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_BI_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_BI_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_BI_SST (1 << 4) /* Sent stall */
#define UDCCS_BI_FST (1 << 5) /* Force stall */
#define UDCCS_BI_TSP (1 << 7) /* Transmit short packet */
/* Bulk OUT - Endpoint 2,7,12 */
#define UDCCS2 __REG(0x40600018) /* UDC Endpoint 2 (OUT) Control/Status Register */
#define UDCCS7 __REG(0x4060002C) /* UDC Endpoint 7 (OUT) Control/Status Register */
#define UDCCS12 __REG(0x40600040) /* UDC Endpoint 12 (OUT) Control/Status Register */
#define UDCCS_BO_RFS (1 << 0) /* Receive FIFO service */
#define UDCCS_BO_RPC (1 << 1) /* Receive packet complete */
#define UDCCS_BO_DME (1 << 3) /* DMA enable */
#define UDCCS_BO_SST (1 << 4) /* Sent stall */
#define UDCCS_BO_FST (1 << 5) /* Force stall */
#define UDCCS_BO_RNE (1 << 6) /* Receive FIFO not empty */
#define UDCCS_BO_RSP (1 << 7) /* Receive short packet */
/* Isochronous IN - Endpoint 3,8,13 */
#define UDCCS3 __REG(0x4060001C) /* UDC Endpoint 3 (IN) Control/Status Register */
#define UDCCS8 __REG(0x40600030) /* UDC Endpoint 8 (IN) Control/Status Register */
#define UDCCS13 __REG(0x40600044) /* UDC Endpoint 13 (IN) Control/Status Register */
#define UDCCS_II_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_II_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_II_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_II_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_II_TSP (1 << 7) /* Transmit short packet */
/* Isochronous OUT - Endpoint 4,9,14 */
#define UDCCS4 __REG(0x40600020) /* UDC Endpoint 4 (OUT) Control/Status Register */
#define UDCCS9 __REG(0x40600034) /* UDC Endpoint 9 (OUT) Control/Status Register */
#define UDCCS14 __REG(0x40600048) /* UDC Endpoint 14 (OUT) Control/Status Register */
#define UDCCS_IO_RFS (1 << 0) /* Receive FIFO service */
#define UDCCS_IO_RPC (1 << 1) /* Receive packet complete */
#define UDCCS_IO_ROF (1 << 3) /* Receive overflow */
#define UDCCS_IO_DME (1 << 3) /* DMA enable */
#define UDCCS_IO_RNE (1 << 6) /* Receive FIFO not empty */
#define UDCCS_IO_RSP (1 << 7) /* Receive short packet */
/* Interrupt IN - Endpoint 5,10,15 */
#define UDCCS5 __REG(0x40600024) /* UDC Endpoint 5 (Interrupt) Control/Status Register */
#define UDCCS10 __REG(0x40600038) /* UDC Endpoint 10 (Interrupt) Control/Status Register */
#define UDCCS15 __REG(0x4060004C) /* UDC Endpoint 15 (Interrupt) Control/Status Register */
#define UDCCS_INT_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_INT_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_INT_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_INT_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_INT_SST (1 << 4) /* Sent stall */
#define UDCCS_INT_FST (1 << 5) /* Force stall */
#define UDCCS_INT_TSP (1 << 7) /* Transmit short packet */
#define UFNRH __REG(0x40600060) /* UDC Frame Number Register High */
#define UFNRL __REG(0x40600064) /* UDC Frame Number Register Low */
#define UBCR2 __REG(0x40600068) /* UDC Byte Count Reg 2 */
@ -566,11 +666,51 @@ typedef void (*ExcpHndlr) (void) ;
#define UDDR13 __REG(0x40600C00) /* UDC Endpoint 13 Data Register */
#define UDDR14 __REG(0x40600E00) /* UDC Endpoint 14 Data Register */
#define UDDR15 __REG(0x406000E0) /* UDC Endpoint 15 Data Register */
#define UICR0 __REG(0x40600050) /* UDC Interrupt Control Register 0 */
#define UICR0_IM0 (1 << 0) /* Interrupt mask ep 0 */
#define UICR0_IM1 (1 << 1) /* Interrupt mask ep 1 */
#define UICR0_IM2 (1 << 2) /* Interrupt mask ep 2 */
#define UICR0_IM3 (1 << 3) /* Interrupt mask ep 3 */
#define UICR0_IM4 (1 << 4) /* Interrupt mask ep 4 */
#define UICR0_IM5 (1 << 5) /* Interrupt mask ep 5 */
#define UICR0_IM6 (1 << 6) /* Interrupt mask ep 6 */
#define UICR0_IM7 (1 << 7) /* Interrupt mask ep 7 */
#define UICR1 __REG(0x40600054) /* UDC Interrupt Control Register 1 */
#define UICR1_IM8 (1 << 0) /* Interrupt mask ep 8 */
#define UICR1_IM9 (1 << 1) /* Interrupt mask ep 9 */
#define UICR1_IM10 (1 << 2) /* Interrupt mask ep 10 */
#define UICR1_IM11 (1 << 3) /* Interrupt mask ep 11 */
#define UICR1_IM12 (1 << 4) /* Interrupt mask ep 12 */
#define UICR1_IM13 (1 << 5) /* Interrupt mask ep 13 */
#define UICR1_IM14 (1 << 6) /* Interrupt mask ep 14 */
#define UICR1_IM15 (1 << 7) /* Interrupt mask ep 15 */
#define USIR0 __REG(0x40600058) /* UDC Status Interrupt Register 0 */
#define USIR0_IR0 (1 << 0) /* Interrup request ep 0 */
#define USIR0_IR1 (1 << 1) /* Interrup request ep 1 */
#define USIR0_IR2 (1 << 2) /* Interrup request ep 2 */
#define USIR0_IR3 (1 << 3) /* Interrup request ep 3 */
#define USIR0_IR4 (1 << 4) /* Interrup request ep 4 */
#define USIR0_IR5 (1 << 5) /* Interrup request ep 5 */
#define USIR0_IR6 (1 << 6) /* Interrup request ep 6 */
#define USIR0_IR7 (1 << 7) /* Interrup request ep 7 */
#define USIR1 __REG(0x4060005C) /* UDC Status Interrupt Register 1 */
#define USIR1_IR8 (1 << 0) /* Interrup request ep 8 */
#define USIR1_IR9 (1 << 1) /* Interrup request ep 9 */
#define USIR1_IR10 (1 << 2) /* Interrup request ep 10 */
#define USIR1_IR11 (1 << 3) /* Interrup request ep 11 */
#define USIR1_IR12 (1 << 4) /* Interrup request ep 12 */
#define USIR1_IR13 (1 << 5) /* Interrup request ep 13 */
#define USIR1_IR14 (1 << 6) /* Interrup request ep 14 */
#define USIR1_IR15 (1 << 7) /* Interrup request ep 15 */
/*
* Fast Infrared Communication Port
@ -917,6 +1057,22 @@ typedef void (*ExcpHndlr) (void) ;
#define PGSR2 __REG(0x40F00028) /* Power Manager GPIO Sleep State Register for GP[84-64] */
#define RCSR __REG(0x40F00030) /* Reset Controller Status Register */
#define PSSR_RDH (1 << 5) /* Read Disable Hold */
#define PSSR_PH (1 << 4) /* Peripheral Control Hold */
#define PSSR_VFS (1 << 2) /* VDD Fault Status */
#define PSSR_BFS (1 << 1) /* Battery Fault Status */
#define PSSR_SSS (1 << 0) /* Software Sleep Status */
#define PCFR_DS (1 << 3) /* Deep Sleep Mode */
#define PCFR_FS (1 << 2) /* Float Static Chip Selects */
#define PCFR_FP (1 << 1) /* Float PCMCIA controls */
#define PCFR_OPDE (1 << 0) /* 3.6864 MHz oscillator power-down enable */
#define RCSR_GPR (1 << 3) /* GPIO Reset */
#define RCSR_SMR (1 << 2) /* Sleep Mode */
#define RCSR_WDR (1 << 1) /* Watchdog Reset */
#define RCSR_HWR (1 << 0) /* Hardware Reset */
/*
* SSP Serial Port Registers
@ -1040,19 +1196,105 @@ typedef void (*ExcpHndlr) (void) ;
#define LCCR0_BM (1 << 20) /* Branch mask */
#define LCCR0_OUM (1 << 21) /* Output FIFO underrun mask */
#define LCCR1_PPL Fld (10, 0) /* Pixels Per Line - 1 */
#define LCCR1_DisWdth(Pixel) /* Display Width [1..800 pix.] */ \
(((Pixel) - 1) << FShft (LCCR1_PPL))
#define LCCR1_HSW Fld (6, 10) /* Horizontal Synchronization */
#define LCCR1_HorSnchWdth(Tpix) /* Horizontal Synchronization */ \
/* pulse Width [1..64 Tpix] */ \
(((Tpix) - 1) << FShft (LCCR1_HSW))
#define LCCR1_ELW Fld (8, 16) /* End-of-Line pixel clock Wait */
/* count - 1 [Tpix] */
#define LCCR1_EndLnDel(Tpix) /* End-of-Line Delay */ \
/* [1..256 Tpix] */ \
(((Tpix) - 1) << FShft (LCCR1_ELW))
#define LCCR1_BLW Fld (8, 24) /* Beginning-of-Line pixel clock */
/* Wait count - 1 [Tpix] */
#define LCCR1_BegLnDel(Tpix) /* Beginning-of-Line Delay */ \
/* [1..256 Tpix] */ \
(((Tpix) - 1) << FShft (LCCR1_BLW))
#define LCCR2_LPP Fld (10, 0) /* Line Per Panel - 1 */
#define LCCR2_DisHght(Line) /* Display Height [1..1024 lines] */ \
(((Line) - 1) << FShft (LCCR2_LPP))
#define LCCR2_VSW Fld (6, 10) /* Vertical Synchronization pulse */
/* Width - 1 [Tln] (L_FCLK) */
#define LCCR2_VrtSnchWdth(Tln) /* Vertical Synchronization pulse */ \
/* Width [1..64 Tln] */ \
(((Tln) - 1) << FShft (LCCR2_VSW))
#define LCCR2_EFW Fld (8, 16) /* End-of-Frame line clock Wait */
/* count [Tln] */
#define LCCR2_EndFrmDel(Tln) /* End-of-Frame Delay */ \
/* [0..255 Tln] */ \
((Tln) << FShft (LCCR2_EFW))
#define LCCR2_BFW Fld (8, 24) /* Beginning-of-Frame line clock */
/* Wait count [Tln] */
#define LCCR2_BegFrmDel(Tln) /* Beginning-of-Frame Delay */ \
/* [0..255 Tln] */ \
((Tln) << FShft (LCCR2_BFW))
#if 0
#define LCCR3_PCD (0xff) /* Pixel clock divisor */
#define LCCR3_ACB (0xff << 8) /* AC Bias pin frequency */
#define LCCR3_ACB_S 8
#endif
#define LCCR3_API (0xf << 16) /* AC Bias pin trasitions per interrupt */
#define LCCR3_API_S 16
#define LCCR3_VSP (1 << 20) /* vertical sync polarity */
#define LCCR3_HSP (1 << 21) /* horizontal sync polarity */
#define LCCR3_PCP (1 << 22) /* pixel clock polarity */
#define LCCR3_OEP (1 << 23) /* output enable polarity */
#if 0
#define LCCR3_BPP (7 << 24) /* bits per pixel */
#define LCCR3_BPP_S 24
#endif
#define LCCR3_DPC (1 << 27) /* double pixel clock mode */
#define LCCR3_PCD Fld (8, 0) /* Pixel Clock Divisor */
#define LCCR3_PixClkDiv(Div) /* Pixel Clock Divisor */ \
(((Div) << FShft (LCCR3_PCD)))
#define LCCR3_BPP Fld (3, 24) /* Bit Per Pixel */
#define LCCR3_Bpp(Bpp) /* Bit Per Pixel */ \
(((Bpp) << FShft (LCCR3_BPP)))
#define LCCR3_ACB Fld (8, 8) /* AC Bias */
#define LCCR3_Acb(Acb) /* BAC Bias */ \
(((Acb) << FShft (LCCR3_ACB)))
#define LCCR3_HorSnchH (LCCR3_HSP*0) /* Horizontal Synchronization */
/* pulse active High */
#define LCCR3_HorSnchL (LCCR3_HSP*1) /* Horizontal Synchronization */
#define LCCR3_VrtSnchH (LCCR3_VSP*0) /* Vertical Synchronization pulse */
/* active High */
#define LCCR3_VrtSnchL (LCCR3_VSP*1) /* Vertical Synchronization pulse */
/* active Low */
#define LCSR_LDD (1 << 0) /* LCD Disable Done */
#define LCSR_SOF (1 << 1) /* Start of frame */
#define LCSR_BER (1 << 2) /* Bus error */
#define LCSR_ABC (1 << 3) /* AC Bias count */
#define LCSR_IUL (1 << 4) /* input FIFO underrun Lower panel */
#define LCSR_IUU (1 << 5) /* input FIFO underrun Upper panel */
#define LCSR_OU (1 << 6) /* output FIFO underrun */
#define LCSR_QD (1 << 7) /* quick disable */
#define LCSR_EOF (1 << 8) /* end of frame */
#define LCSR_BS (1 << 9) /* branch status */
#define LCSR_SINT (1 << 10) /* subsequent interrupt */
#define LDCMD_PAL (1 << 26) /* instructs DMA to load palette buffer */
#define LCSR_LDD (1 << 0) /* LCD Disable Done */
#define LCSR_SOF (1 << 1) /* Start of frame */
#define LCSR_BER (1 << 2) /* Bus error */
@ -1071,45 +1313,7 @@ typedef void (*ExcpHndlr) (void) ;
* Memory controller
*/
#define MEMC_BASE __REG(0x48000000) /* Base of Memoriy Controller */
#define MDCNFG __REG(0x48000000) /* SDRAM Configuration Register 0 */
#define MDREFR __REG(0x48000004) /* SDRAM Refresh Control Register */
#define MSC0 __REG(0x48000008) /* Static Memory Control Register 0 */
#define MSC1 __REG(0x4800000C) /* Static Memory Control Register 1 */
#define MSC2 __REG(0x48000010) /* Static Memory Control Register 2 */
#define MECR __REG(0x48000014) /* Expansion Memory (PCMCIA/Compact Flash) Bus Configuration */
#define SXLCR __REG(0x48000018) /* LCR value to be written to SDRAM-Timing Synchronous Flash */
#define SXCNFG __REG(0x4800001C) /* Synchronous Static Memory Control Register */
#define SXMRS __REG(0x48000024) /* MRS value to be written to Synchronous Flash or SMROM */
#define MCMEM0 __REG(0x48000028) /* Card interface Common Memory Space Socket 0 Timing */
#define MCMEM1 __REG(0x4800002C) /* Card interface Common Memory Space Socket 1 Timing */
#define MCATT0 __REG(0x48000030) /* Card interface Attribute Space Socket 0 Timing Configuration */
#define MCATT1 __REG(0x48000034) /* Card interface Attribute Space Socket 1 Timing Configuration */
#define MCIO0 __REG(0x48000038) /* Card interface I/O Space Socket 0 Timing Configuration */
#define MCIO1 __REG(0x4800003C) /* Card interface I/O Space Socket 1 Timing Configuration */
#define MDMRS __REG(0x48000040) /* MRS value to be written to SDRAM */
#define BOOT_DEF __REG(0x48000044) /* Read-Only Boot-Time Register. Contains BOOT_SEL and PKG_SEL */
#define MDCNFG_DE0 0x00000001
#define MDCNFG_DE1 0x00000002
#define MDCNFG_DE2 0x00010000
#define MDCNFG_DE3 0x00020000
#define MDCNFG_DWID0 0x00000004
#define MDREFR_E0PIN 0x00001000
#define MDREFR_K0RUN 0x00002000
#define MDREFR_K0DB2 0x00004000
#define MDREFR_E1PIN 0x00008000
#define MDREFR_K1RUN 0x00010000
#define MDREFR_K1DB2 0x00020000
#define MDREFR_K2RUN 0x00040000
#define MDREFR_K2DB2 0x00080000
#define MDREFR_APD 0x00100000
#define MDREFR_SLFRSH 0x00400000
#define MDREFR_K0FREE 0x00800000
#define MDREFR_K1FREE 0x01000000
#define MDREFR_K2FREE 0x02000000
#define MEMC_BASE __REG(0x48000000) /* Base of Memory Controller */
#define MDCNFG_OFFSET 0x0
#define MDREFR_OFFSET 0x4
#define MSC0_OFFSET 0x8
@ -1127,7 +1331,44 @@ typedef void (*ExcpHndlr) (void) ;
#define MCIO0_OFFSET 0x38
#define MCIO1_OFFSET 0x3C
#define MDMRS_OFFSET 0x40
#define MDCNFG __REG(0x48000000) /* SDRAM Configuration Register 0 */
#define MDCNFG_DE0 0x00000001
#define MDCNFG_DE1 0x00000002
#define MDCNFG_DE2 0x00010000
#define MDCNFG_DE3 0x00020000
#define MDCNFG_DWID0 0x00000004
#define MDREFR __REG(0x48000004) /* SDRAM Refresh Control Register */
#define MSC0 __REG(0x48000008) /* Static Memory Control Register 0 */
#define MSC1 __REG(0x4800000C) /* Static Memory Control Register 1 */
#define MSC2 __REG(0x48000010) /* Static Memory Control Register 2 */
#define MECR __REG(0x48000014) /* Expansion Memory (PCMCIA/Compact Flash) Bus Configuration */
#define SXLCR __REG(0x48000018) /* LCR value to be written to SDRAM-Timing Synchronous Flash */
#define SXCNFG __REG(0x4800001C) /* Synchronous Static Memory Control Register */
#define SXMRS __REG(0x48000024) /* MRS value to be written to Synchronous Flash or SMROM */
#define MCMEM0 __REG(0x48000028) /* Card interface Common Memory Space Socket 0 Timing */
#define MCMEM1 __REG(0x4800002C) /* Card interface Common Memory Space Socket 1 Timing */
#define MCATT0 __REG(0x48000030) /* Card interface Attribute Space Socket 0 Timing Configuration */
#define MCATT1 __REG(0x48000034) /* Card interface Attribute Space Socket 1 Timing Configuration */
#define MCIO0 __REG(0x48000038) /* Card interface I/O Space Socket 0 Timing Configuration */
#define MCIO1 __REG(0x4800003C) /* Card interface I/O Space Socket 1 Timing Configuration */
#define MDMRS __REG(0x48000040) /* MRS value to be written to SDRAM */
#define BOOT_DEF __REG(0x48000044) /* Read-Only Boot-Time Register. Contains BOOT_SEL and PKG_SEL */
#define MDREFR_K2FREE (1 << 25) /* SDRAM Free-Running Control */
#define MDREFR_K1FREE (1 << 24) /* SDRAM Free-Running Control */
#define MDREFR_K0FREE (1 << 23) /* SDRAM Free-Running Control */
#define MDREFR_SLFRSH (1 << 22) /* SDRAM Self-Refresh Control/Status */
#define MDREFR_APD (1 << 20) /* SDRAM/SSRAM Auto-Power-Down Enable */
#define MDREFR_K2DB2 (1 << 19) /* SDCLK2 Divide by 2 Control/Status */
#define MDREFR_K2RUN (1 << 18) /* SDCLK2 Run Control/Status */
#define MDREFR_K1DB2 (1 << 17) /* SDCLK1 Divide by 2 Control/Status */
#define MDREFR_K1RUN (1 << 16) /* SDCLK1 Run Control/Status */
#define MDREFR_E1PIN (1 << 15) /* SDCKE1 Level Control/Status */
#define MDREFR_K0DB2 (1 << 14) /* SDCLK0 Divide by 2 Control/Status */
#define MDREFR_K0RUN (1 << 13) /* SDCLK0 Run Control/Status */
#define MDREFR_E0PIN (1 << 12) /* SDCKE0 Level Control/Status */
#endif

@ -61,6 +61,8 @@ struct pt_regs {
#define ARM_r0 uregs[0]
#define ARM_ORIG_r0 uregs[17]
#define instruction_pointer(regs) ((regs)->ARM_ip)
#ifdef __KERNEL__
#define user_mode(regs) \

@ -0,0 +1,444 @@
/*
* (C) Copyright 2000, 2001, 2002
* Robert Schwebel, Pengutronix, r.schwebel@pengutronix.de.
*
* Configuration for the Auerswald Innokom CPU board.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* include/configs/innokom.h - configuration options, board specific
*/
#ifndef __CONFIG_H
#define __CONFIG_H
#define DEBUG 1
/*
* If we are developing, we might want to start U-Boot from ram
* so we MUST NOT initialize critical regs like mem-timing ...
*/
#define CONFIG_INIT_CRITICAL /* undef for developing */
/*
* High Level Configuration Options
* (easy to change)
*/
#define CONFIG_PXA250 1 /* This is an PXA250 CPU */
#define CONFIG_INNOKOM 1 /* on an Auerswald Innokom board */
#undef CONFIG_USE_IRQ /* we don't need IRQ/FIQ stuff */
/* for timer/console/ethernet */
/*
* Hardware drivers
*/
/*
* select serial console configuration
*/
#define CONFIG_FFUART 1 /* we use FFUART on CSB226 */
/* allow to overwrite serial and ethaddr */
#define CONFIG_ENV_OVERWRITE
#define CONFIG_BAUDRATE 19200
#define CONFIG_COMMANDS ((CONFIG_CMD_DFL | CFG_CMD_I2C | CFG_CMD_EEPROM) & ~CFG_CMD_NET)
/* this must be included AFTER the definition of CONFIG_COMMANDS (if any) */
#include <cmd_confdefs.h>
#define CONFIG_BOOTDELAY 3
/* #define CONFIG_BOOTARGS "root=/dev/nfs ip=bootp console=ttyS0,19200" */
#define CONFIG_BOOTARGS "console=ttyS0,19200"
#define CONFIG_ETHADDR FF:FF:FF:FF:FF:FF
#define CONFIG_NETMASK 255.255.255.0
#define CONFIG_IPADDR 192.168.1.56
#define CONFIG_SERVERIP 192.168.1.2
#define CONFIG_BOOTCOMMAND "bootm 0x40000"
#define CONFIG_SHOW_BOOT_PROGRESS
#define CONFIG_CMDLINE_TAG 1
#if (CONFIG_COMMANDS & CFG_CMD_KGDB)
#define CONFIG_KGDB_BAUDRATE 19200 /* speed to run kgdb serial port */
#define CONFIG_KGDB_SER_INDEX 2 /* which serial port to use */
#endif
/*
* Miscellaneous configurable options
*/
/*
* Size of malloc() pool; this lives below the uppermost 128 KiB which are
* used for the RAM copy of the uboot code
*/
/* #define CFG_MALLOC_LEN (CFG_ENV_SIZE + 128*1024) */
#define CFG_MALLOC_LEN (128*1024)
#define CFG_LONGHELP /* undef to save memory */
#define CFG_PROMPT "uboot> " /* Monitor Command Prompt */
#define CFG_CBSIZE 128 /* Console I/O Buffer Size */
#define CFG_PBSIZE (CFG_CBSIZE+sizeof(CFG_PROMPT)+16) /* Print Buffer Size */
#define CFG_MAXARGS 16 /* max number of command args */
#define CFG_BARGSIZE CFG_CBSIZE /* Boot Argument Buffer Size */
#define CFG_MEMTEST_START 0xa0400000 /* memtest works on */
#define CFG_MEMTEST_END 0xa0800000 /* 4 ... 8 MB in DRAM */
#undef CFG_CLKS_IN_HZ /* everything, incl board info, in Hz */
#define CFG_LOAD_ADDR 0xa7fe0000 /* default load address */
/* RS: where is this documented? */
/* RS: is this where U-Boot is */
/* RS: relocated to in RAM? */
#define CFG_HZ 3686400 /* incrementer freq: 3.6864 MHz */
/* RS: the oscillator is actually 3680130?? */
#define CFG_CPUSPEED 0x141 /* set core clock to 200/200/100 MHz */
/* 0101000001 */
/* ^^^^^ Memory Speed 99.53 MHz */
/* ^^ Run Mode Speed = 2x Mem Speed */
/* ^^ Turbo Mode Sp. = 1x Run M. Sp. */
#define CFG_MONITOR_LEN 0x20000 /* 128 KiB */
/* valid baudrates */
#define CFG_BAUDRATE_TABLE { 9600, 19200, 38400, 57600, 115200 }
/*
* I2C bus
*/
#define CONFIG_HARD_I2C 1
#define CFG_I2C_SPEED 50000
#define CFG_I2C_SLAVE 0xfe
#define CFG_ENV_IS_IN_EEPROM 1
#define CFG_ENV_OFFSET 0x00 /* environment starts here */
#define CFG_ENV_SIZE 1024 /* 1 KiB */
#define CFG_I2C_EEPROM_ADDR 0x50 /* A0 = 0 (hardwired) */
#define CFG_EEPROM_PAGE_WRITE_BITS 5 /* 5 bits = 32 octets */
#define CFG_EEPROM_PAGE_WRITE_DELAY_MS 10 /* between stop and start */
#define CFG_I2C_EEPROM_ADDR_LEN 2 /* length of address */
#define CFG_EEPROM_SIZE 4096 /* size in bytes */
/*
* Stack sizes
*
* The stack sizes are set up in start.S using the settings below
*/
#define CONFIG_STACKSIZE (128*1024) /* regular stack */
#ifdef CONFIG_USE_IRQ
#define CONFIG_STACKSIZE_IRQ (4*1024) /* IRQ stack */
#define CONFIG_STACKSIZE_FIQ (4*1024) /* FIQ stack */
#endif
/*
* Physical Memory Map
*/
#define CONFIG_NR_DRAM_BANKS 1 /* we have 1 bank of DRAM */
#define PHYS_SDRAM_1 0xa0000000 /* SDRAM Bank #1 */
#define PHYS_SDRAM_1_SIZE 0x04000000 /* 64 MB */
#define PHYS_FLASH_1 0x00000000 /* Flash Bank #1 */
#define PHYS_FLASH_SIZE 0x01000000 /* 16 MB */
#define CFG_DRAM_BASE 0xa0000000 /* RAM starts here */
#define CFG_DRAM_SIZE 0x04000000
#define CFG_FLASH_BASE PHYS_FLASH_1
/*
* GPIO settings;
*/
/* GP15 == nCS1 is 1
* GP24 == SFRM is 1
* GP25 == TXD is 1
* GP33 == nCS5 is 1
* GP39 == FFTXD is 1
* GP41 == RTS is 1
* GP47 == TXD is 1
* GP49 == nPWE is 1
* GP62 == LED_B is 1
* GP63 == TDM_OE is 1
* GP78 == nCS2 is 1
* GP79 == nCS3 is 1
* GP80 == nCS4 is 1
*/
#define CFG_GPSR0_VAL 0x03008000
#define CFG_GPSR1_VAL 0xC0028282
#define CFG_GPSR2_VAL 0x0001C000
/* GP02 == DON_RST is 0
* GP23 == SCLK is 0
* GP45 == USB_ACT is 0
* GP60 == PLLEN is 0
* GP61 == LED_A is 0
* GP73 == SWUPD_LED is 0
*/
#define CFG_GPCR0_VAL 0x00800004
#define CFG_GPCR1_VAL 0x30002000
#define CFG_GPCR2_VAL 0x00000100
/* GP00 == DON_READY is input
* GP01 == DON_OK is input
* GP02 == DON_RST is output
* GP03 == RESET_IND is input
* GP07 == RES11 is input
* GP09 == RES12 is input
* GP11 == SWUPDATE is input
* GP14 == nPOWEROK is input
* GP15 == nCS1 is output
* GP17 == RES22 is input
* GP18 == RDY is input
* GP23 == SCLK is output
* GP24 == SFRM is output
* GP25 == TXD is output
* GP26 == RXD is input
* GP32 == RES21 is input
* GP33 == nCS5 is output
* GP34 == FFRXD is input
* GP35 == CTS is input
* GP39 == FFTXD is output
* GP41 == RTS is output
* GP42 == USB_OK is input
* GP45 == USB_ACT is output
* GP46 == RXD is input
* GP47 == TXD is output
* GP49 == nPWE is output
* GP58 == nCPUBUSINT is input
* GP59 == LANINT is input
* GP60 == PLLEN is output
* GP61 == LED_A is output
* GP62 == LED_B is output
* GP63 == TDM_OE is output
* GP64 == nDSPINT is input
* GP65 == STRAP0 is input
* GP67 == STRAP1 is input
* GP69 == STRAP2 is input
* GP70 == STRAP3 is input
* GP71 == STRAP4 is input
* GP73 == SWUPD_LED is output
* GP78 == nCS2 is output
* GP79 == nCS3 is output
* GP80 == nCS4 is output
*/
#define CFG_GPDR0_VAL 0x03808004
#define CFG_GPDR1_VAL 0xF002A282
#define CFG_GPDR2_VAL 0x0001C200
/* GP15 == nCS1 is AF10
* GP18 == RDY is AF01
* GP23 == SCLK is AF10
* GP24 == SFRM is AF10
* GP25 == TXD is AF10
* GP26 == RXD is AF01
* GP33 == nCS5 is AF10
* GP34 == FFRXD is AF01
* GP35 == CTS is AF01
* GP39 == FFTXD is AF10
* GP41 == RTS is AF10
* GP46 == RXD is AF10
* GP47 == TXD is AF01
* GP49 == nPWE is AF10
* GP78 == nCS2 is AF10
* GP79 == nCS3 is AF10
* GP80 == nCS4 is AF10
*/
#define CFG_GAFR0_L_VAL 0x80000000
#define CFG_GAFR0_U_VAL 0x001A8010
#define CFG_GAFR1_L_VAL 0x60088058
#define CFG_GAFR1_U_VAL 0x00000008
#define CFG_GAFR2_L_VAL 0xA0000000
#define CFG_GAFR2_U_VAL 0x00000002
/* FIXME: set GPIO_RER/FER */
/* RDH = 1
* PH = 1
* VFS = 1
* BFS = 1
* SSS = 1
*/
#define CFG_PSSR_VAL 0x37
/*
* Memory settings
*/
/* This is the configuration for nCS0/1 -> flash banks
* configuration for nCS1:
* [31] 0 - Slower Device
* [30:28] 010 - CS deselect to CS time: 2*(2*MemClk) = 40 ns
* [27:24] 0101 - Address to data valid in bursts: (5+1)*MemClk = 60 ns
* [23:20] 1011 - " for first access: (11+2)*MemClk = 130 ns
* [19] 1 - 16 Bit bus width
* [18:16] 000 - nonburst RAM or FLASH
* configuration for nCS0:
* [15] 0 - Slower Device
* [14:12] 010 - CS deselect to CS time: 2*(2*MemClk) = 40 ns
* [11:08] 0101 - Address to data valid in bursts: (5+1)*MemClk = 60 ns
* [07:04] 1011 - " for first access: (11+2)*MemClk = 130 ns
* [03] 1 - 16 Bit bus width
* [02:00] 000 - nonburst RAM or FLASH
*/
#define CFG_MSC0_VAL 0x25b825b8 /* flash banks */
/* This is the configuration for nCS2/3 -> TDM-Switch, DSP
* configuration for nCS3: DSP
* [31] 0 - Slower Device
* [30:28] 001 - RRR3: CS deselect to CS time: 1*(2*MemClk) = 20 ns
* [27:24] 0010 - RDN3: Address to data valid in bursts: (2+1)*MemClk = 30 ns
* [23:20] 0011 - RDF3: Address for first access: (3+1)*MemClk = 40 ns
* [19] 1 - 16 Bit bus width
* [18:16] 100 - variable latency I/O
* configuration for nCS2: TDM-Switch
* [15] 0 - Slower Device
* [14:12] 101 - RRR2: CS deselect to CS time: 5*(2*MemClk) = 100 ns
* [11:08] 1001 - RDN2: Address to data valid in bursts: (9+1)*MemClk = 100 ns
* [07:04] 0011 - RDF2: Address for first access: (3+1)*MemClk = 40 ns
* [03] 1 - 16 Bit bus width
* [02:00] 100 - variable latency I/O
*/
#define CFG_MSC1_VAL 0x132C593C /* TDM switch, DSP */
/* This is the configuration for nCS4/5 -> ExtBus, LAN Controller
*
* configuration for nCS5: LAN Controller
* [31] 0 - Slower Device
* [30:28] 001 - RRR5: CS deselect to CS time: 1*(2*MemClk) = 20 ns
* [27:24] 0010 - RDN5: Address to data valid in bursts: (2+1)*MemClk = 30 ns
* [23:20] 0011 - RDF5: Address for first access: (3+1)*MemClk = 40 ns
* [19] 1 - 16 Bit bus width
* [18:16] 100 - variable latency I/O
* configuration for nCS4: ExtBus
* [15] 0 - Slower Device
* [14:12] 110 - RRR4: CS deselect to CS time: 6*(2*MemClk) = 120 ns
* [11:08] 1100 - RDN4: Address to data valid in bursts: (12+1)*MemClk = 130 ns
* [07:04] 1101 - RDF4: Address for first access: 13->(15+1)*MemClk = 160 ns
* [03] 1 - 16 Bit bus width
* [02:00] 100 - variable latency I/O
*/
#define CFG_MSC2_VAL 0x132C6CDC /* extra bus, LAN controller */
/* MDCNFG: SDRAM Configuration Register
*
* [31:29] 000 - reserved
* [28] 0 - no SA1111 compatiblity mode
* [27] 0 - latch return data with return clock
* [26] 0 - alternate addressing for pair 2/3
* [25:24] 00 - timings
* [23] 0 - internal banks in lower partition 2/3 (not used)
* [22:21] 00 - row address bits for partition 2/3 (not used)
* [20:19] 00 - column address bits for partition 2/3 (not used)
* [18] 0 - SDRAM partition 2/3 width is 32 bit
* [17] 0 - SDRAM partition 3 disabled
* [16] 0 - SDRAM partition 2 disabled
* [15:13] 000 - reserved
* [12] 1 - SA1111 compatiblity mode
* [11] 1 - latch return data with return clock
* [10] 0 - no alternate addressing for pair 0/1
* [09:08] 01 - tRP=2*MemClk; CL=2; tRCD=2*MemClk; tRAS=5*MemClk; tRC=8*MemClk
* [7] 1 - 4 internal banks in lower partition pair
* [06:05] 10 - 13 row address bits for partition 0/1
* [04:03] 01 - 9 column address bits for partition 0/1
* [02] 0 - SDRAM partition 0/1 width is 32 bit
* [01] 0 - disable SDRAM partition 1
* [00] 1 - enable SDRAM partition 0
*
* use the configuration above but disable partition 0
*/
#define CFG_MDCNFG_VAL 0x000019c8
/* MDREFR: SDRAM Refresh Control Register
*
* [32:26] 0 - reserved
* [25] 0 - K2FREE: not free running
* [24] 0 - K1FREE: not free running
* [23] 0 - K0FREE: not free running
* [22] 0 - SLFRSH: self refresh disabled
* [21] 0 - reserved
* [20] 0 - APD: no auto power down
* [19] 0 - K2DB2: SDCLK2 is MemClk
* [18] 0 - K2RUN: disable SDCLK2
* [17] 0 - K1DB2: SDCLK1 is MemClk
* [16] 1 - K1RUN: enable SDCLK1
* [15] 1 - E1PIN: SDRAM clock enable
* [14] 1 - K0DB2: SDCLK0 is MemClk
* [13] 1 - K0RUN: disable SDCLK0
* [12] 1 - E0PIN: disable SDCKE0
* [11:00] 000000011000 - (64ms/8192)*MemClkFreq/32 = 24
*/
#define CFG_MDREFR_VAL 0x0001F018
/* MDMRS: Mode Register Set Configuration Register
*
* [31] 0 - reserved
* [30:23] 00000000- MDMRS2: SDRAM2/3 MRS Value. (not used)
* [22:20] 000 - MDCL2: SDRAM2/3 Cas Latency. (not used)
* [19] 0 - MDADD2: SDRAM2/3 burst Type. Fixed to sequential. (not used)
* [18:16] 010 - MDBL2: SDRAM2/3 burst Length. Fixed to 4. (not used)
* [15] 0 - reserved
* [14:07] 00000000- MDMRS0: SDRAM0/1 MRS Value.
* [06:04] 010 - MDCL0: SDRAM0/1 Cas Latency.
* [03] 0 - MDADD0: SDRAM0/1 burst Type. Fixed to sequential.
* [02:00] 010 - MDBL0: SDRAM0/1 burst Length. Fixed to 4.
*/
#define CFG_MDMRS_VAL 0x00020022
/*
* PCMCIA and CF Interfaces
*/
#define CFG_MECR_VAL 0x00000000
#define CFG_MCMEM0_VAL 0x00000000
#define CFG_MCMEM1_VAL 0x00000000
#define CFG_MCATT0_VAL 0x00000000
#define CFG_MCATT1_VAL 0x00000000
#define CFG_MCIO0_VAL 0x00000000
#define CFG_MCIO1_VAL 0x00000000
/*
#define CSB226_USER_LED0 0x00000008
#define CSB226_USER_LED1 0x00000010
#define CSB226_USER_LED2 0x00000020
*/
/*
* FLASH and environment organization
*/
#define CFG_MAX_FLASH_BANKS 1 /* max number of memory banks */
#define CFG_MAX_FLASH_SECT 128 /* max number of sect. on one chip */
/* timeout values are in ticks */
#define CFG_FLASH_ERASE_TOUT (2*CFG_HZ) /* Timeout for Flash Erase */
#define CFG_FLASH_WRITE_TOUT (2*CFG_HZ) /* Timeout for Flash Write */
#if 0
#define CFG_ENV_IS_IN_FLASH 1
#define CFG_ENV_ADDR (PHYS_FLASH_1 + 0x1C000)
/* Addr of Environment Sector */
#define CFG_ENV_SIZE 0x4000 /* Total Size of Environment Sector */
#endif
#endif /* __CONFIG_H */

@ -123,6 +123,7 @@
#define CONFIG_BOOTARGS "console=ttyS0"
#define CONFIG_NETMASK 255.255.0.0
#define CONFIG_IPADDR 192.168.3.68
#define CONFIG_HOSTNAME trab
#define CONFIG_SERVERIP 192.168.3.1
#define CONFIG_BOOTCOMMAND "run flash_nfs"
#define CONFIG_EXTRA_ENV_SETTINGS \
@ -220,7 +221,11 @@
* FLASH and environment organization
*/
#define CFG_MAX_FLASH_BANKS 1 /* max number of memory banks */
#ifndef CONFIG_BIG_FLASH
#define CFG_MAX_FLASH_SECT 71 /* max number of sectors on one chip */
#else
#define CFG_MAX_FLASH_SECT 128 /* max number of sectors on one chip */
#endif
/* timeout values are in ticks */
#define CFG_FLASH_ERASE_TOUT (2*CFG_HZ) /* Timeout for Flash Erase */
@ -229,11 +234,18 @@
#define CFG_ENV_IS_IN_FLASH 1
/* Address and size of Primary Environment Sector */
#ifndef CONFIG_BIG_FLASH
#define CFG_ENV_ADDR (CFG_FLASH_BASE + 0x4000)
#define CFG_ENV_SIZE 0x4000
#define CFG_ENV_SECT_SIZE 0x4000
#else
#define CFG_ENV_ADDR (CFG_FLASH_BASE + 0x40000)
#define CFG_ENV_SIZE 0x4000
#define CFG_ENV_SECT_SIZE 0x20000
#endif
/* Address and size of Redundant Environment Sector */
#define CFG_ENV_OFFSET_REDUND (CFG_ENV_ADDR+CFG_ENV_SIZE)
#define CFG_ENV_OFFSET_REDUND (CFG_ENV_ADDR+CFG_ENV_SECT_SIZE)
#define CFG_ENV_SIZE_REDUND (CFG_ENV_SIZE)
#endif /* __CONFIG_H */

@ -36,15 +36,33 @@
# ifndef CFG_ENV_OFFSET
# define CFG_ENV_OFFSET (CFG_ENV_ADDR - CFG_FLASH_BASE)
# endif
# if !defined(CFG_ENV_ADDR_REDUND) && defined(CFG_ENV_OFFSET_REDUND)
# define CFG_ENV_ADDR_REDUND (CFG_FLASH_BASE + CFG_ENV_OFFSET_REDUND)
# endif
# ifndef CFG_ENV_SIZE
# define CFG_ENV_SIZE CFG_ENV_SECT_SIZE
# endif
# if ((CFG_ENV_ADDR >= CFG_MONITOR_BASE) && \
((CFG_ENV_ADDR+CFG_ENV_SIZE) <= (CFG_MONITOR_BASE + CFG_MONITOR_LEN)))
# define ENV_IS_EMBEDDED
# if defined(CFG_ENV_ADDR_REDUND) && !defined(CFG_ENV_SIZE_REDUND)
# define CFG_ENV_SIZE_REDUND CFG_ENV_SIZE
# endif
# if (CFG_ENV_ADDR >= CFG_MONITOR_BASE) && \
((CFG_ENV_ADDR + CFG_ENV_SIZE) <= (CFG_MONITOR_BASE + CFG_MONITOR_LEN))
# define ENV_IS_EMBEDDED 1
# endif
# if defined(CFG_ENV_ADDR_REDUND) || defined(CFG_ENV_OFFSET_REDUND)
# define CFG_REDUNDAND_ENVIRONMENT 1
# endif
#endif /* CFG_ENV_IS_IN_FLASH */
#ifdef CFG_REDUNDAND_ENVIRONMENT
# define ENV_HEADER_SIZE (sizeof(unsigned long) + 1)
#else
# define ENV_HEADER_SIZE (sizeof(unsigned long))
#endif
#define ENV_SIZE (CFG_ENV_SIZE - ENV_HEADER_SIZE)
extern unsigned long crc32 (unsigned long, const unsigned char *, unsigned int);
#ifdef ENV_IS_EMBEDDED
@ -57,9 +75,8 @@ int main (int argc, char **argv)
#ifdef ENV_IS_EMBEDDED
int crc ;
unsigned char *envptr = &environment,
*dataptr = envptr + sizeof(unsigned int) + 1;
unsigned int datasize = env_size - (dataptr - envptr) ;
*dataptr = envptr + ENV_HEADER_SIZE;
unsigned int datasize = ENV_SIZE;
crc = crc32(0, dataptr, datasize) ;

Loading…
Cancel
Save