Initial revision

master
wdenk 22 years ago
parent fe8c2806cd
commit c542fb2e8d
  1. 86
      board/bmw/bmw.h
  2. 757
      board/bmw/flash.c
  3. 515
      board/cradle/memsetup.S

@ -0,0 +1,86 @@
/*
* BMW/MPC8245 Board definitions.
* For more info, see http://www.vooha.com/
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2002
* James Dougherty (jfd@broadcom.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef __BMW_H
#define __BMW_H
/* System addresses */
#define PCI_SPECIAL_BASE 0xfe000000
#define PCI_SPECIAL_SIZE 0x01000000
#define EUMBBAR_VAL 0x80500000 /* Location of EUMB region */
#define EUMBSIZE 0x00100000 /* Size of EUMB region */
/* Extended ROM space devices */
#define DOC_BASE_ADDR 0xff000000 /* Onboard DOC TSOP 16MB */
#define DOC2_BASE_ADDR 0x70000000 /* DIP32 socket -> 1GB */
#define XROM_BASE_ADDR 0x7c000000 /* RCS2 (PAL / Satellite IO) */
#define PLD_REG_BASE XROM_BASE_ADDR
#define LED_REG_BASE (XROM_BASE_ADDR | 0x2000)
#define TOD_BASE (XROM_BASE_ADDR | 0x4000)
#define LED_REG(x) (*(volatile unsigned char *) \
(LED_REG_BASE + (x)))
#define XROM_DEV_SIZE 0x00006000
#define ENET_DEV_BASE 0x80000000
#define PLD_REG(off) (*(volatile unsigned char *)\
(PLD_REG_BASE + (off)))
#define PLD_REVID_B1 0x7f /* Fix me */
#define PLD_REVID_B2 0x01 /* Fix me */
#define SYS_HARD_RESET() { for (;;) PLD_REG(0) = 0; } /* clr 0x80 bit */
#define SYS_REVID_GET() ((int) PLD_REG(0) & 0x7f)
#define SYS_LED_OFF() (PLD_REG(1) |= 0x80)
#define SYS_LED_ON() (PLD_REG(1) &= ~0x80)
#define SYS_WATCHDOG_IRQ3() (PLD_REG(2) |= 0x80)
#define SYS_WATCHDOG_RESET() (PLD_REG(2) &= ~0x80)
#define SYS_TOD_PROTECT() (PLD_REG(3) |= 0x80)
#define SYS_TOD_UNPROTECT() (PLD_REG(3) &= ~0x80)
#define TOD_REG_BASE (TOD_BASE | 0x1ff0)
#define TOD_NVRAM_BASE TOD_BASE
#define TOD_NVRAM_SIZE 0x1ff0
#define TOD_NVRAM_LIMIT (TOD_NVRAM_BASE + TOD_NVRAM_SIZE)
#define RTC(r) (TOD_BASE + r)
/* Onboard BCM570x device */
#define PCI_ENET_IOADDR 0x80000000
#define PCI_ENET_MEMADDR 0x80000000
#ifndef __ASSEMBLY__
/* C Function prototypes */
void sys_led_msg(char* msg);
#endif /* !__ASSEMBLY__ */
#endif /* __BMW_H */

@ -0,0 +1,757 @@
/*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <mpc824x.h>
#include <asm/processor.h>
#include <asm/pci_io.h>
#define ROM_CS0_START 0xFF800000
#define ROM_CS1_START 0xFF000000
flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */
#if defined(CFG_ENV_IS_IN_FLASH)
# ifndef CFG_ENV_ADDR
# define CFG_ENV_ADDR (CFG_FLASH_BASE + CFG_ENV_OFFSET)
# endif
# ifndef CFG_ENV_SIZE
# define CFG_ENV_SIZE CFG_ENV_SECT_SIZE
# endif
# ifndef CFG_ENV_SECT_SIZE
# define CFG_ENV_SECT_SIZE CFG_ENV_SIZE
# endif
#endif
/*-----------------------------------------------------------------------
* Functions
*/
static int write_word (flash_info_t *info, ulong dest, ulong data);
#if 0
static void flash_get_offsets (ulong base, flash_info_t *info);
#endif /* 0 */
/*flash command address offsets*/
#if 0
#define ADDR0 (0x555)
#define ADDR1 (0x2AA)
#define ADDR3 (0x001)
#else
#define ADDR0 (0xAAA)
#define ADDR1 (0x555)
#define ADDR3 (0x001)
#endif
#define FLASH_WORD_SIZE unsigned char
/*-----------------------------------------------------------------------
*/
#if 0
static int byte_parity_odd(unsigned char x) __attribute__ ((const));
#endif /* 0 */
static unsigned long flash_id(unsigned char mfct, unsigned char chip) __attribute__ ((const));
typedef struct
{
FLASH_WORD_SIZE extval;
unsigned short intval;
} map_entry;
#if 0
static int
byte_parity_odd(unsigned char x)
{
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return (x & 0x1) != 0;
}
#endif /* 0 */
static unsigned long
flash_id(unsigned char mfct, unsigned char chip)
{
static const map_entry mfct_map[] =
{
{(FLASH_WORD_SIZE) AMD_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_AMD >> 16)},
{(FLASH_WORD_SIZE) FUJ_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_FUJ >> 16)},
{(FLASH_WORD_SIZE) STM_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_STM >> 16)},
{(FLASH_WORD_SIZE) MT_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_MT >> 16)},
{(FLASH_WORD_SIZE) INTEL_MANUFACT,(unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)},
{(FLASH_WORD_SIZE) INTEL_ALT_MANU,(unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)}
};
static const map_entry chip_map[] =
{
{AMD_ID_F040B, FLASH_AM040},
{(FLASH_WORD_SIZE) STM_ID_x800AB, FLASH_STM800AB}
};
const map_entry *p;
unsigned long result = FLASH_UNKNOWN;
/* find chip id */
for(p = &chip_map[0]; p < &chip_map[sizeof chip_map / sizeof chip_map[0]]; p++)
if(p->extval == chip)
{
result = FLASH_VENDMASK | p->intval;
break;
}
/* find vendor id */
for(p = &mfct_map[0]; p < &mfct_map[sizeof mfct_map / sizeof mfct_map[0]]; p++)
if(p->extval == mfct)
{
result &= ~FLASH_VENDMASK;
result |= (unsigned long) p->intval << 16;
break;
}
return result;
}
unsigned long
flash_init(void)
{
unsigned long i;
unsigned char j;
static const ulong flash_banks[] = CFG_FLASH_BANKS;
/* Init: no FLASHes known */
for (i = 0; i < CFG_MAX_FLASH_BANKS; i++)
{
flash_info_t * const pflinfo = &flash_info[i];
pflinfo->flash_id = FLASH_UNKNOWN;
pflinfo->size = 0;
pflinfo->sector_count = 0;
}
for(i = 0; i < sizeof flash_banks / sizeof flash_banks[0]; i++)
{
flash_info_t * const pflinfo = &flash_info[i];
const unsigned long base_address = flash_banks[i];
volatile FLASH_WORD_SIZE * const flash = (FLASH_WORD_SIZE *) base_address;
#if 0
volatile FLASH_WORD_SIZE * addr2;
#endif
#if 0
/* write autoselect sequence */
flash[0x5555] = 0xaa;
flash[0x2aaa] = 0x55;
flash[0x5555] = 0x90;
#else
flash[0xAAA << (3 * i)] = 0xaa;
flash[0x555 << (3 * i)] = 0x55;
flash[0xAAA << (3 * i)] = 0x90;
#endif
__asm__ __volatile__("sync");
#if 0
pflinfo->flash_id = flash_id(flash[0x0], flash[0x1]);
#else
pflinfo->flash_id = flash_id(flash[0x0], flash[0x2 + 14 * i]);
#endif
switch(pflinfo->flash_id & FLASH_TYPEMASK)
{
case FLASH_AM040:
pflinfo->size = 0x00080000;
pflinfo->sector_count = 8;
for(j = 0; j < 8; j++)
{
pflinfo->start[j] = base_address + 0x00010000 * j;
pflinfo->protect[j] = flash[(j << 16) | 0x2];
}
break;
case FLASH_STM800AB:
pflinfo->size = 0x00100000;
pflinfo->sector_count = 19;
pflinfo->start[0] = base_address;
pflinfo->start[1] = base_address + 0x4000;
pflinfo->start[2] = base_address + 0x6000;
pflinfo->start[3] = base_address + 0x8000;
for(j = 1; j < 16; j++)
{
pflinfo->start[j+3] = base_address + 0x00010000 * j;
}
#if 0
/* check for protected sectors */
for (j = 0; j < pflinfo->sector_count; j++) {
/* read sector protection at sector address, (A7 .. A0) = 0x02 */
/* D0 = 1 if protected */
addr2 = (volatile FLASH_WORD_SIZE *)(pflinfo->start[j]);
if (pflinfo->flash_id & FLASH_MAN_SST)
pflinfo->protect[j] = 0;
else
pflinfo->protect[j] = addr2[2] & 1;
}
#endif
break;
}
/* Protect monitor and environment sectors
*/
#if CFG_MONITOR_BASE >= CFG_FLASH_BASE
flash_protect(FLAG_PROTECT_SET,
CFG_MONITOR_BASE,
CFG_MONITOR_BASE + CFG_MONITOR_LEN - 1,
&flash_info[0]);
#endif
#if (CFG_ENV_IS_IN_FLASH == 1) && defined(CFG_ENV_ADDR)
flash_protect(FLAG_PROTECT_SET,
CFG_ENV_ADDR,
CFG_ENV_ADDR + CFG_ENV_SIZE - 1,
&flash_info[0]);
#endif
/* reset device to read mode */
flash[0x0000] = 0xf0;
__asm__ __volatile__("sync");
}
return flash_info[0].size + flash_info[1].size;
}
#if 0
static void
flash_get_offsets (ulong base, flash_info_t *info)
{
int i;
/* set up sector start address table */
if (info->flash_id & FLASH_MAN_SST)
{
for (i = 0; i < info->sector_count; i++)
info->start[i] = base + (i * 0x00010000);
}
else
if (info->flash_id & FLASH_BTYPE) {
/* set sector offsets for bottom boot block type */
info->start[0] = base + 0x00000000;
info->start[1] = base + 0x00004000;
info->start[2] = base + 0x00006000;
info->start[3] = base + 0x00008000;
for (i = 4; i < info->sector_count; i++) {
info->start[i] = base + (i * 0x00010000) - 0x00030000;
}
} else {
/* set sector offsets for top boot block type */
i = info->sector_count - 1;
info->start[i--] = base + info->size - 0x00004000;
info->start[i--] = base + info->size - 0x00006000;
info->start[i--] = base + info->size - 0x00008000;
for (; i >= 0; i--) {
info->start[i] = base + i * 0x00010000;
}
}
}
#endif /* 0 */
/*-----------------------------------------------------------------------
*/
void
flash_print_info(flash_info_t *info)
{
static const char unk[] = "Unknown";
const char *mfct = unk, *type = unk;
unsigned int i;
if(info->flash_id != FLASH_UNKNOWN)
{
switch(info->flash_id & FLASH_VENDMASK)
{
case FLASH_MAN_AMD: mfct = "AMD"; break;
case FLASH_MAN_FUJ: mfct = "FUJITSU"; break;
case FLASH_MAN_STM: mfct = "STM"; break;
case FLASH_MAN_SST: mfct = "SST"; break;
case FLASH_MAN_BM: mfct = "Bright Microelectonics"; break;
case FLASH_MAN_INTEL: mfct = "Intel"; break;
}
switch(info->flash_id & FLASH_TYPEMASK)
{
case FLASH_AM040: type = "AM29F040B (512K * 8, uniform sector size)"; break;
case FLASH_AM400B: type = "AM29LV400B (4 Mbit, bottom boot sect)"; break;
case FLASH_AM400T: type = "AM29LV400T (4 Mbit, top boot sector)"; break;
case FLASH_AM800B: type = "AM29LV800B (8 Mbit, bottom boot sect)"; break;
case FLASH_AM800T: type = "AM29LV800T (8 Mbit, top boot sector)"; break;
case FLASH_AM160T: type = "AM29LV160T (16 Mbit, top boot sector)"; break;
case FLASH_AM320B: type = "AM29LV320B (32 Mbit, bottom boot sect)"; break;
case FLASH_AM320T: type = "AM29LV320T (32 Mbit, top boot sector)"; break;
case FLASH_STM800AB: type = "M29W800AB (8 Mbit, bottom boot sect)"; break;
case FLASH_SST800A: type = "SST39LF/VF800 (8 Mbit, uniform sector size)"; break;
case FLASH_SST160A: type = "SST39LF/VF160 (16 Mbit, uniform sector size)"; break;
}
}
printf(
"\n Brand: %s Type: %s\n"
" Size: %lu KB in %d Sectors\n",
mfct,
type,
info->size >> 10,
info->sector_count
);
printf (" Sector Start Addresses:");
for (i = 0; i < info->sector_count; i++)
{
unsigned long size;
unsigned int erased;
unsigned long * flash = (unsigned long *) info->start[i];
/*
* Check if whole sector is erased
*/
size =
(i != (info->sector_count - 1)) ?
(info->start[i + 1] - info->start[i]) >> 2 :
(info->start[0] + info->size - info->start[i]) >> 2;
for(
flash = (unsigned long *) info->start[i], erased = 1;
(flash != (unsigned long *) info->start[i] + size) && erased;
flash++
)
erased = *flash == ~0x0UL;
printf(
"%s %08lX %s %s",
(i % 5) ? "" : "\n ",
info->start[i],
erased ? "E" : " ",
info->protect[i] ? "RO" : " "
);
}
puts("\n");
return;
}
#if 0
/*
* The following code cannot be run from FLASH!
*/
ulong
flash_get_size (vu_long *addr, flash_info_t *info)
{
short i;
FLASH_WORD_SIZE value;
ulong base = (ulong)addr;
volatile FLASH_WORD_SIZE *addr2 = (FLASH_WORD_SIZE *)addr;
printf("flash_get_size: \n");
/* Write auto select command: read Manufacturer ID */
eieio();
addr2[ADDR0] = (FLASH_WORD_SIZE)0xAA;
addr2[ADDR1] = (FLASH_WORD_SIZE)0x55;
addr2[ADDR0] = (FLASH_WORD_SIZE)0x90;
value = addr2[0];
switch (value) {
case (FLASH_WORD_SIZE)AMD_MANUFACT:
info->flash_id = FLASH_MAN_AMD;
break;
case (FLASH_WORD_SIZE)FUJ_MANUFACT:
info->flash_id = FLASH_MAN_FUJ;
break;
case (FLASH_WORD_SIZE)SST_MANUFACT:
info->flash_id = FLASH_MAN_SST;
break;
default:
info->flash_id = FLASH_UNKNOWN;
info->sector_count = 0;
info->size = 0;
return (0); /* no or unknown flash */
}
printf("recognised manufacturer");
value = addr2[ADDR3]; /* device ID */
debug ("\ndev_code=%x\n", value);
switch (value) {
case (FLASH_WORD_SIZE)AMD_ID_LV400T:
info->flash_id += FLASH_AM400T;
info->sector_count = 11;
info->size = 0x00080000;
break; /* => 0.5 MB */
case (FLASH_WORD_SIZE)AMD_ID_LV400B:
info->flash_id += FLASH_AM400B;
info->sector_count = 11;
info->size = 0x00080000;
break; /* => 0.5 MB */
case (FLASH_WORD_SIZE)AMD_ID_LV800T:
info->flash_id += FLASH_AM800T;
info->sector_count = 19;
info->size = 0x00100000;
break; /* => 1 MB */
case (FLASH_WORD_SIZE)AMD_ID_LV800B:
info->flash_id += FLASH_AM800B;
info->sector_count = 19;
info->size = 0x00100000;
break; /* => 1 MB */
case (FLASH_WORD_SIZE)AMD_ID_LV160T:
info->flash_id += FLASH_AM160T;
info->sector_count = 35;
info->size = 0x00200000;
break; /* => 2 MB */
case (FLASH_WORD_SIZE)AMD_ID_LV160B:
info->flash_id += FLASH_AM160B;
info->sector_count = 35;
info->size = 0x00200000;
break; /* => 2 MB */
case (FLASH_WORD_SIZE)SST_ID_xF800A:
info->flash_id += FLASH_SST800A;
info->sector_count = 16;
info->size = 0x00100000;
break; /* => 1 MB */
case (FLASH_WORD_SIZE)SST_ID_xF160A:
info->flash_id += FLASH_SST160A;
info->sector_count = 32;
info->size = 0x00200000;
break; /* => 2 MB */
case (FLASH_WORD_SIZE)AMD_ID_F040B:
info->flash_id += FLASH_AM040;
info->sector_count = 8;
info->size = 0x00080000;
break; /* => 0.5 MB */
default:
info->flash_id = FLASH_UNKNOWN;
return (0); /* => no or unknown flash */
}
printf("flash id %lx; sector count %x, size %lx\n", info->flash_id,info->sector_count,info->size);
/* set up sector start address table */
if (info->flash_id & FLASH_MAN_SST)
{
for (i = 0; i < info->sector_count; i++)
info->start[i] = base + (i * 0x00010000);
}
else
if (info->flash_id & FLASH_BTYPE) {
/* set sector offsets for bottom boot block type */
info->start[0] = base + 0x00000000;
info->start[1] = base + 0x00004000;
info->start[2] = base + 0x00006000;
info->start[3] = base + 0x00008000;
for (i = 4; i < info->sector_count; i++) {
info->start[i] = base + (i * 0x00010000) - 0x00030000;
}
} else {
/* set sector offsets for top boot block type */
i = info->sector_count - 1;
info->start[i--] = base + info->size - 0x00004000;
info->start[i--] = base + info->size - 0x00006000;
info->start[i--] = base + info->size - 0x00008000;
for (; i >= 0; i--) {
info->start[i] = base + i * 0x00010000;
}
}
/* check for protected sectors */
for (i = 0; i < info->sector_count; i++) {
/* read sector protection at sector address, (A7 .. A0) = 0x02 */
/* D0 = 1 if protected */
addr2 = (volatile FLASH_WORD_SIZE *)(info->start[i]);
if (info->flash_id & FLASH_MAN_SST)
info->protect[i] = 0;
else
info->protect[i] = addr2[2] & 1;
}
/*
* Prevent writes to uninitialized FLASH.
*/
if (info->flash_id != FLASH_UNKNOWN) {
addr2 = (FLASH_WORD_SIZE *)info->start[0];
*addr2 = (FLASH_WORD_SIZE)0x00F000F0; /* reset bank */
}
return (info->size);
}
#endif
int
flash_erase(flash_info_t *info, int s_first, int s_last)
{
volatile FLASH_WORD_SIZE *addr = (FLASH_WORD_SIZE *)(info->start[0]);
int flag, prot, sect, l_sect;
ulong start, now, last;
unsigned char sh8b;
if ((s_first < 0) || (s_first > s_last)) {
if (info->flash_id == FLASH_UNKNOWN) {
printf ("- missing\n");
} else {
printf ("- no sectors to erase\n");
}
return 1;
}
if ((info->flash_id == FLASH_UNKNOWN) ||
(info->flash_id > (FLASH_MAN_STM | FLASH_AMD_COMP))) {
printf ("Can't erase unknown flash type - aborted\n");
return 1;
}
prot = 0;
for (sect=s_first; sect<=s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot) {
printf ("- Warning: %d protected sectors will not be erased!\n",
prot);
} else {
printf ("\n");
}
l_sect = -1;
/* Check the ROM CS */
if ((info->start[0] >= ROM_CS1_START) && (info->start[0] < ROM_CS0_START))
sh8b = 3;
else
sh8b = 0;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE)0x00550055;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00800080;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE)0x00550055;
/* Start erase on unprotected sectors */
for (sect = s_first; sect<=s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
addr = (FLASH_WORD_SIZE *)(info->start[0] + (
(info->start[sect] - info->start[0]) << sh8b));
if (info->flash_id & FLASH_MAN_SST)
{
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE)0x00550055;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00800080;
addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00AA00AA;
addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE)0x00550055;
addr[0] = (FLASH_WORD_SIZE)0x00500050; /* block erase */
udelay(30000); /* wait 30 ms */
}
else
addr[0] = (FLASH_WORD_SIZE)0x00300030; /* sector erase */
l_sect = sect;
}
}
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts();
/* wait at least 80us - let's wait 1 ms */
udelay (1000);
/*
* We wait for the last triggered sector
*/
if (l_sect < 0)
goto DONE;
start = get_timer (0);
last = start;
addr = (FLASH_WORD_SIZE *)(info->start[0] + (
(info->start[l_sect] - info->start[0]) << sh8b));
while ((addr[0] & (FLASH_WORD_SIZE)0x00800080) != (FLASH_WORD_SIZE)0x00800080) {
if ((now = get_timer(start)) > CFG_FLASH_ERASE_TOUT) {
printf ("Timeout\n");
return 1;
}
/* show that we're waiting */
if ((now - last) > 1000) { /* every second */
serial_putc ('.');
last = now;
}
}
DONE:
/* reset to read mode */
addr = (FLASH_WORD_SIZE *)info->start[0];
addr[0] = (FLASH_WORD_SIZE)0x00F000F0; /* reset bank */
printf (" done\n");
return 0;
}
/*-----------------------------------------------------------------------
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
{
ulong cp, wp, data;
int i, l, rc;
wp = (addr & ~3); /* get lower word aligned address */
/*
* handle unaligned start bytes
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i=0, cp=wp; i<l; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
}
for (; i<4 && cnt>0; ++i) {
data = (data << 8) | *src++;
--cnt;
++cp;
}
for (; cnt==0 && i<4; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
}
if ((rc = write_word(info, wp, data)) != 0) {
return (rc);
}
wp += 4;
}
/*
* handle word aligned part
*/
while (cnt >= 4) {
data = 0;
for (i=0; i<4; ++i) {
data = (data << 8) | *src++;
}
if ((rc = write_word(info, wp, data)) != 0) {
return (rc);
}
wp += 4;
cnt -= 4;
}
if (cnt == 0) {
return (0);
}
/*
* handle unaligned tail bytes
*/
data = 0;
for (i=0, cp=wp; i<4 && cnt>0; ++i, ++cp) {
data = (data << 8) | *src++;
--cnt;
}
for (; i<4; ++i, ++cp) {
data = (data << 8) | (*(uchar *)cp);
}
return (write_word(info, wp, data));
}
/*-----------------------------------------------------------------------
* Write a word to Flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
static int write_word (flash_info_t *info, ulong dest, ulong data)
{
volatile FLASH_WORD_SIZE *addr2 = (FLASH_WORD_SIZE *)info->start[0];
volatile FLASH_WORD_SIZE *dest2;
volatile FLASH_WORD_SIZE *data2 = (FLASH_WORD_SIZE *)&data;
ulong start;
int flag;
int i;
unsigned char sh8b;
/* Check the ROM CS */
if ((info->start[0] >= ROM_CS1_START) && (info->start[0] < ROM_CS0_START))
sh8b = 3;
else
sh8b = 0;
dest2 = (FLASH_WORD_SIZE *)(((dest - info->start[0]) << sh8b) +
info->start[0]);
/* Check if Flash is (sufficiently) erased */
if ((*dest2 & (FLASH_WORD_SIZE)data) != (FLASH_WORD_SIZE)data) {
return (2);
}
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
for (i=0; i<4/sizeof(FLASH_WORD_SIZE); i++)
{
addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00AA00AA;
addr2[ADDR1 << sh8b] = (FLASH_WORD_SIZE)0x00550055;
addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE)0x00A000A0;
dest2[i << sh8b] = data2[i];
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts();
/* data polling for D7 */
start = get_timer (0);
while ((dest2[i << sh8b] & (FLASH_WORD_SIZE)0x00800080) !=
(data2[i] & (FLASH_WORD_SIZE)0x00800080)) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
return (1);
}
}
}
return (0);
}
/*-----------------------------------------------------------------------
*/

@ -0,0 +1,515 @@
/*
* Most of this taken from Redboot hal_platform_setup.h with cleanup
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <version.h>
#include <asm/arch/pxa-regs.h>
DRAM_SIZE: .long CFG_DRAM_SIZE
/* wait for coprocessor write complete */
.macro CPWAIT reg
mrc p15,0,\reg,c2,c0,0
mov \reg,\reg
sub pc,pc,#4
.endm
.macro SET_LED val
ldr r6, =CRADLE_LED_CLR_REG
ldr r7, =0
str r7, [r6]
ldr r6, =CRADLE_LED_SET_REG
ldr r7, =\val
str r7, [r6]
.endm
.globl memsetup
memsetup:
mov r10, lr
/* Set up GPIO pins first */
ldr r0, =GPSR0
ldr r1, =CFG_GPSR0_VAL
str r1, [r0]
ldr r0, =GPSR1
ldr r1, =CFG_GPSR1_VAL
str r1, [r0]
ldr r0, =GPSR2
ldr r1, =CFG_GPSR2_VAL
str r1, [r0]
ldr r0, =GPCR0
ldr r1, =CFG_GPCR0_VAL
str r1, [r0]
ldr r0, =GPCR1
ldr r1, =CFG_GPCR1_VAL
str r1, [r0]
ldr r0, =GPCR2
ldr r1, =CFG_GPCR2_VAL
str r1, [r0]
ldr r0, =GRER0
ldr r1, =CFG_GRER0_VAL
str r1, [r0]
ldr r0, =GRER1
ldr r1, =CFG_GRER1_VAL
str r1, [r0]
ldr r0, =GRER2
ldr r1, =CFG_GRER2_VAL
str r1, [r0]
ldr r0, =GFER0
ldr r1, =CFG_GFER0_VAL
str r1, [r0]
ldr r0, =GFER1
ldr r1, =CFG_GFER1_VAL
str r1, [r0]
ldr r0, =GFER2
ldr r1, =CFG_GFER2_VAL
str r1, [r0]
ldr r0, =GPDR0
ldr r1, =CFG_GPDR0_VAL
str r1, [r0]
ldr r0, =GPDR1
ldr r1, =CFG_GPDR1_VAL
str r1, [r0]
ldr r0, =GPDR2
ldr r1, =CFG_GPDR2_VAL
str r1, [r0]
ldr r0, =GAFR0_L
ldr r1, =CFG_GAFR0_L_VAL
str r1, [r0]
ldr r0, =GAFR0_U
ldr r1, =CFG_GAFR0_U_VAL
str r1, [r0]
ldr r0, =GAFR1_L
ldr r1, =CFG_GAFR1_L_VAL
str r1, [r0]
ldr r0, =GAFR1_U
ldr r1, =CFG_GAFR1_U_VAL
str r1, [r0]
ldr r0, =GAFR2_L
ldr r1, =CFG_GAFR2_L_VAL
str r1, [r0]
ldr r0, =GAFR2_U
ldr r1, =CFG_GAFR2_U_VAL
str r1, [r0]
/* enable GPIO pins */
ldr r0, =PSSR
ldr r1, =CFG_PSSR_VAL
str r1, [r0]
SET_LED 1
ldr r3, =MSC1 /* low - bank 2 Lubbock Registers / SRAM */
ldr r2, =CFG_MSC1_VAL /* high - bank 3 Ethernet Controller */
str r2, [r3] /* need to set MSC1 before trying to write to the HEX LEDs */
ldr r2, [r3] /* need to read it back to make sure the value latches (see MSC section of manual) */
/*********************************************************************
Initlialize Memory Controller
See PXA250 Operating System Developer's Guide
pause for 200 uSecs- allow internal clocks to settle
*Note: only need this if hard reset... doing it anyway for now
*/
@ Step 1
@ ---- Wait 200 usec
ldr r3, =OSCR @ reset the OS Timer Count to zero
mov r2, #0
str r2, [r3]
ldr r4, =0x300 @ really 0x2E1 is about 200usec, so 0x300 should be plenty
1:
ldr r2, [r3]
cmp r4, r2
bgt 1b
SET_LED 2
mem_init:
@ get memory controller base address
ldr r1, =MEMC_BASE
@****************************************************************************
@ Step 2
@
@ Step 2a
@ write msc0, read back to ensure data latches
@
ldr r2, =CFG_MSC0_VAL
str r2, [r1, #MSC0_OFFSET]
ldr r2, [r1, #MSC0_OFFSET]
@ write msc1
ldr r2, =CFG_MSC1_VAL
str r2, [r1, #MSC1_OFFSET]
ldr r2, [r1, #MSC1_OFFSET]
@ write msc2
ldr r2, =CFG_MSC2_VAL
str r2, [r1, #MSC2_OFFSET]
ldr r2, [r1, #MSC2_OFFSET]
@ Step 2b
@ write mecr
ldr r2, =CFG_MECR_VAL
str r2, [r1, #MECR_OFFSET]
@ write mcmem0
ldr r2, =CFG_MCMEM0_VAL
str r2, [r1, #MCMEM0_OFFSET]
@ write mcmem1
ldr r2, =CFG_MCMEM1_VAL
str r2, [r1, #MCMEM1_OFFSET]
@ write mcatt0
ldr r2, =CFG_MCATT0_VAL
str r2, [r1, #MCATT0_OFFSET]
@ write mcatt1
ldr r2, =CFG_MCATT1_VAL
str r2, [r1, #MCATT1_OFFSET]
@ write mcio0
ldr r2, =CFG_MCIO0_VAL
str r2, [r1, #MCIO0_OFFSET]
@ write mcio1
ldr r2, =CFG_MCIO1_VAL
str r2, [r1, #MCIO1_OFFSET]
/*SET_LED 3 */
@ Step 2c
@ fly-by-dma is defeatured on this part
@ write flycnfg
@ldr r2, =CFG_FLYCNFG_VAL
@str r2, [r1, #FLYCNFG_OFFSET]
/* FIXME Does this sequence really make sense */
#ifdef REDBOOT_WAY
@ Step 2d
@ get the mdrefr settings
ldr r3, =CFG_MDREFR_VAL
@ extract DRI field (we need a valid DRI field)
@
ldr r2, =0xFFF
@ valid DRI field in r3
@
and r3, r3, r2
@ get the reset state of MDREFR
@
ldr r4, [r1, #MDREFR_OFFSET]
@ clear the DRI field
@
bic r4, r4, r2
@ insert the valid DRI field loaded above
@
orr r4, r4, r3
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
@ *Note: preserve the mdrefr value in r4 *
/*SET_LED 4 */
@****************************************************************************
@ Step 3
@
@ NO SRAM
mov pc, r10
@****************************************************************************
@ Step 4
@
@ Assumes previous mdrefr value in r4, if not then read current mdrefr
@ clear the free-running clock bits
@ (clear K0Free, K1Free, K2Free
@
bic r4, r4, #(0x00800000 | 0x01000000 | 0x02000000)
@ set K0RUN for CPLD clock
@
orr r4, r4, #0x00002000
@ set K1RUN if bank 0 installed
@
orr r4, r4, #0x00010000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
ldr r4, [r1, #MDREFR_OFFSET]
@ deassert SLFRSH
@
bic r4, r4, #0x00400000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
@ assert E1PIN
@
orr r4, r4, #0x00008000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
ldr r4, [r1, #MDREFR_OFFSET]
nop
nop
#else
@ Step 2d
@ get the mdrefr settings
ldr r3, =CFG_MDREFR_VAL
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
@ Step 4
@ set K0RUN for CPLD clock
@
orr r4, r4, #0x00002000
@ set K1RUN for bank 0
@
orr r4, r4, #0x00010000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
ldr r4, [r1, #MDREFR_OFFSET]
@ deassert SLFRSH
@
bic r4, r4, #0x00400000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
@ assert E1PIN
@
orr r4, r4, #0x00008000
@ write back mdrefr
@
str r4, [r1, #MDREFR_OFFSET]
ldr r4, [r1, #MDREFR_OFFSET]
nop
nop
#endif
@ Step 4d
@ fetch platform value of mdcnfg
@
ldr r2, =CFG_MDCNFG_VAL
@ disable all sdram banks
@
bic r2, r2, #(MDCNFG_DE0 | MDCNFG_DE1)
bic r2, r2, #(MDCNFG_DE2 | MDCNFG_DE3)
@ program banks 0/1 for bus width
@
bic r2, r2, #MDCNFG_DWID0 @0=32-bit
@ write initial value of mdcnfg, w/o enabling sdram banks
@
str r2, [r1, #MDCNFG_OFFSET]
@ Step 4e
@ pause for 200 uSecs
@
ldr r3, =OSCR @ reset the OS Timer Count to zero
mov r2, #0
str r2, [r3]
ldr r4, =0x300 @ really 0x2E1 is about 200usec, so 0x300 should be plenty
1:
ldr r2, [r3]
cmp r4, r2
bgt 1b
/*SET_LED 5 */
/* Why is this here??? */
mov r0, #0x78 @turn everything off
mcr p15, 0, r0, c1, c0, 0 @(caches off, MMU off, etc.)
@ Step 4f
@ Access memory *not yet enabled* for CBR refresh cycles (8)
@ - CBR is generated for all banks
ldr r2, =CFG_DRAM_BASE
str r2, [r2]
str r2, [r2]
str r2, [r2]
str r2, [r2]
str r2, [r2]
str r2, [r2]
str r2, [r2]
str r2, [r2]
@ Step 4g
@get memory controller base address
@
ldr r1, =MEMC_BASE
@fetch current mdcnfg value
@
ldr r3, [r1, #MDCNFG_OFFSET]
@enable sdram bank 0 if installed (must do for any populated bank)
@
orr r3, r3, #MDCNFG_DE0
@write back mdcnfg, enabling the sdram bank(s)
@
str r3, [r1, #MDCNFG_OFFSET]
@ Step 4h
@ write mdmrs
@
ldr r2, =CFG_MDMRS_VAL
str r2, [r1, #MDMRS_OFFSET]
@ Done Memory Init
/*SET_LED 6 */
@********************************************************************
@ Disable (mask) all interrupts at the interrupt controller
@
@ clear the interrupt level register (use IRQ, not FIQ)
@
mov r1, #0
ldr r2, =ICLR
str r1, [r2]
@ Set interrupt mask register
@
ldr r1, =CFG_ICMR_VAL
ldr r2, =ICMR
str r1, [r2]
@ ********************************************************************
@ Disable the peripheral clocks, and set the core clock
@
@ Turn Off ALL on-chip peripheral clocks for re-configuration
@
ldr r1, =CKEN
mov r2, #0
str r2, [r1]
@ set core clocks
@
ldr r2, =CFG_CCCR_VAL
ldr r1, =CCCR
str r2, [r1]
#ifdef ENABLE32KHZ
@ enable the 32Khz oscillator for RTC and PowerManager
@
ldr r1, =OSCC
mov r2, #OSCC_OON
str r2, [r1]
@ NOTE: spin here until OSCC.OOK get set,
@ meaning the PLL has settled.
@
60:
ldr r2, [r1]
ands r2, r2, #1
beq 60b
#endif
@ Turn on needed clocks
@
ldr r1, =CKEN
ldr r2, =CFG_CKEN_VAL
str r2, [r1]
/*SET_LED 7 */
/* Is this needed???? */
#define NODEBUG
#ifdef NODEBUG
/*Disable software and data breakpoints */
mov r0,#0
mcr p15,0,r0,c14,c8,0 /* ibcr0 */
mcr p15,0,r0,c14,c9,0 /* ibcr1 */
mcr p15,0,r0,c14,c4,0 /* dbcon */
/*Enable all debug functionality */
mov r0,#0x80000000
mcr p14,0,r0,c10,c0,0 /* dcsr */
#endif
/*SET_LED 8 */
mov pc, r10
@ End memsetup
Loading…
Cancel
Save