Several macros are used to identify and locate the microcode binary image
that U-boot needs to upload to the QE or Fman. Both the QE and the Fman
use the QE Firmware binary format to package their respective microcode data,
which is why the same macros are used for both. A given SOC will only have
a QE or an Fman, so this is safe.
Unfortunately, the current macro definition and usage has inconsistencies.
For example, CONFIG_SYS_FMAN_FW_ADDR was used to define the address of Fman
firmware in NOR flash, but CONFIG_SYS_QE_FW_IN_NAND contains the address
of NAND. There's no way to know by looking at a variable how it's supposed
to be used.
In the future, the code which uploads QE firmware and Fman firmware will
be merged.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On the P1022/P1013, the work-around for erratum SATA_A001 was implemented
only if U-Boot initializes SATA, but SATA is not initialized by default. So
move the work-around to the CPU initialization function, so that it's always
executed on the SOCs that need it.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Fix:
cpu_init.c: In function 'cpu_init_r':
cpu_init.c:320:7: warning: variable 'l2srbar' set but not used [-Wunused-but-set-variable]
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The erratum NMG_LBC103 is LBIU3 in MPC8548 errata document.
Any local bus transaction may fail during LBIU resynchronization
process when the clock divider [CLKDIV] is changing. Ensure there
is no transaction on the local bus for at least 100 microseconds
after changing clock divider LCRR[CLKDIV].
Refer to the erratum LBIU3 of mpc8548.
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Pre u-boot Flow:
1. User loads the u-boot image in flash
2. PBL/Configuration word is used to create LAW for Flash at 0xc0000000
(Please note that ISBC expects all these addresses, images to be
validated, entry point etc within 0 - 3.5G range)
3. ISBC validates the u-boot image, and passes control to u-boot
at 0xcffffffc.
Changes in u-boot:
1. Temporarily map CONFIG_SYS_MONITOR_BASE to the 1M
CONFIG_SYS_PBI_FLASH_WINDOW in AS=1.
(The CONFIG_SYS_PBI_FLASH_WINDOW is the address map for the flash
created by PBL/configuration word within 0 - 3.5G memory range. The
u-boot image at this address has been validated by ISBC code)
2. Remove TLB entries for 0 - 3.5G created by ISBC code
3. Remove the LAW entry for the CONFIG_SYS_PBI_FLASH_WINDOW created by
PBL/configuration word after switch to AS = 1
Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Kuldip Giroh <kuldip.giroh@freescale.com>
Acked-by: Wood Scott-B07421 <B07421@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The Frame Manager (FMan) on QorIQ SoCs with DPAA (datapath acceleration
architecture) is the ethernet contoller block. Normally it is utilized
via Queue Manager (Qman) and Buffer Manager (Bman). However for boot
usage the FMan supports a mode similar to QE or CPM ethernet collers
called Independent mode.
Additionally the FMan block supports multiple 1g and 10g interfaces as a
single entity in the system rather than each controller being managed
uniquely. This means we have to initialize all of Fman regardless of
the number of interfaces we utilize.
Different SoCs support different combinations of the number of FMan as
well as the number of 1g & 10g interfaces support per Fman.
We add support for the following SoCs:
* P1023 - 1 Fman, 2x1g
* P4080 - 2 Fman, each Fman has 4x1g and 1x10g
* P204x/P3041/P5020 - 1 Fman, 5x1g, 1x10g
Signed-off-by: Dave Liu <daveliu@freescale.com>
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Dai Haruki <dai.haruki@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@freescale.com>
Signed-off-by: Lei Xu <B33228@freescale.com>
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The P2040/P2040E have no L2 cache. So we utilize the SVR to determine
if we are one of these devices and skip the L2 init code in cpu_init.c
and release. For the device tree we skip the updating of the L2 cache
properties but we still update the chain of caches so the CPC/L3 node
can be properly updated.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Configuring DCSRCR to define the DCSR space to be 1G instead
of the default 4M. DCSRCR only allows selection of either 4M
or 1G.
Most DCSR registers are within 4M but the Nexus trace buffer
is located at offset 16M within the DCSR.
Configuring the LAW to be 32M to allow access to the Nexus
trace buffer. No TLB modification is required since accessing
the Nexus trace buffer from within u-boot is not required.
Signed-off-by: Stephen George <stephen.george@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The P2040, P3041, P5010, and P5020 all have internal USB PHYs that we
need to enable for them to function.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
PBL(pre-boot loader): SPI flash used as RCW(Reset Configuration Word) and
PBI(pre-boot initialization) source, CPC(CoreNet Platform Cache) used as
1M SRAM where PBL will copy whole U-BOOT image to, U-boot can boot from
CPC after PBL completes RCW and PBI phases.
Signed-off-by: Chunhe Lan <b25806@freescale.com>
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Shaohui Xie <b21989@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
In the case the QE's microcode is stored in nand flash, we need to load it from
NAND flash to ddr first then the qe_init can get the ucode correctly.
Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
We can simplify some cpu/SoC level initialization by moving it to be
after the environment and non-volatile storage is setup as there might
be dependancies on such things in various boot configurations.
For example for FSL SoC's with QE if we boot from NAND we need it setup
to extra the ucode image to initialize the QE. If we always do this
after environment & non-volatile storage is working we can have the code
be the same regardless of NOR, NAND, SPI, MMC boot.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
CoreNet Platform Cache single-bit data error scrubbing will cause data
corruption. Disable the feature to workaround the issue.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
CoreNet Platform Cache single-bit tag error scrubbing will cause tag
corruption. Disable the feature to workaround the issue.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
False multi-bit ECC errors will be reported by the eSDHC buffer which
can trigger a reset request.
We disable all ECC error checking on SDHC.
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Moved the SRIO init out of corenet_ds and into common code for
8xxx/QorIQ processors that have SRIO. We mimic what we do with PCIe
controllers for SRIO.
We utilize the fact that SRIO is over serdes to determine if its
configured or not and thus can setup the LAWs needed for it dynamically.
We additionally update the device tree (to remove the SRIO nodes) if the
board doesn't have SRIO enabled.
Introduced the following standard defines for board config.h:
CONFIG_SYS_SRIO - Chip has SRIO or not
CONFIG_SRIO1 - Board has SRIO 1 port available
CONFIG_SRIO2 - Board has SRIO 2 port available
(where 'n' is the port #)
CONFIG_SYS_SRIOn_MEM_VIRT - virtual address in u-boot
CONFIG_SYS_SRIOn_MEM_PHYS - physical address (for law setup)
CONFIG_SYS_SRIOn_MEM_SIZE - size of window (for law setup)
[ These mimic what we have for PCI and PCIe controllers ]
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Wolfgang Denk <wd@denx.de>
This fixes the compiling error for the board which doesn't have NOR flash
(so CONFIG_FLASH_BASE is not defined)
Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
fixes breakeage introduced by commit
a37c36f4e7 "powerpc/8xxx: query
feature reporting register for num cores on unknown cpus"
Reported-by: Wolfgang Denk <wd@denx.de>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The CoreNet style platforms can have a L3 cache that fronts the memory
controllers. Enable that cache as well as add information into the
device tree about it.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Dave Liu <daveliu@freescale.com>
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Move serdes init until after we are in ram so we can keep track of a
global static protocal map for the particular serdes config we are in.
This makes is_serdes_configured() much simplier and not constantly
reading registers to determine if a given device is enabled based on the
protocol.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Currently, 83xx, 86xx, and 85xx have a lot of duplicated code
dedicated to defining and manipulating the LBC registers. Merge
this into a single spot.
To do this, we have to decide on a common name for the data structure
that holds the lbc registers - it will now be known as fsl_lbc_t, and we
adopt a common name for the immap layouts that include the lbc - this was
previously known as either im_lbc or lbus; use the former.
In addition, create accessors for the BR/OR regs that use in/out_be32
and use those instead of the mismash of access methods currently in play.
I have done a successful ppc build all and tested a board or two from
each processor family.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On the MPC85xx platform if we have SATA its connected on SERDES.
Determing if SATA is enabled via sata_initialize should not be board
specific and thus we move it out of the MPC8536DS board code.
Additionally, now that we have is_serdes_configured() we can determine
if the given SATA port is enabled and error out if its not in the
driver.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Lan Chunhe <b25806@freescale.com>
Signed-off-by: Roy Zang <tie-fei.zang@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
As discussed on the list, move "arch/ppc" to "arch/powerpc" to
better match the Linux directory structure.
Please note that this patch also changes the "ppc" target in
MAKEALL to "powerpc" to match this new infrastructure. But "ppc"
is kept as an alias for now, to not break compatibility with
scripts using this name.
Signed-off-by: Stefan Roese <sr@denx.de>
Acked-by: Wolfgang Denk <wd@denx.de>
Acked-by: Detlev Zundel <dzu@denx.de>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
Cc: Peter Tyser <ptyser@xes-inc.com>
Cc: Anatolij Gustschin <agust@denx.de>
We need to track which TLB CAM entries are used to allow us to
"dynamically" allocate entries later in the code. For example the SPD
DDR code today hard codes which TLB entries it uses. We can now make
that pick entries that are free.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The e500mc core supports the ability to stash into the L1 or L2 cache,
however we need to uniquely identify the caches with an id.
We use the following equation to set the various stash-ids:
32 + coreID*2 + 0(L1) or 1(L2)
The 0 (for L1) or 1 (for L2) matches the CT field used be various cache
control instructions.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
According the user manual, we need loop-check the L2 enable bit set.
Signed-off-by: Dave Liu <daveliu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On CoreNet style platforms the timebase frequency is the bus frequency
defined by 16 (on PQ3 it is divide by 8). Also on the CoreNet platforms
the core not longer controls the enabling of the timebase. We now need
to enable the boot core's timebase via CCSR register writes.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
We should make sure to clear MSR[ME, CE, DE] when we boot an OS image
since we have changed the exception vectors and the OSes vectors might
not be setup we should avoid async interrupts at all costs.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Use write_tlb and don't use memset so we can use the same code for
cpu_init_early_f between NAND SPL and not.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch
implements these three bootup methods in a unified way - all of these
use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM
which lets us use the SPD to initialize the SDRAM.
For all three bootup methods, the bootup process can be divided into two
stages: the first stage will initialize the corresponding controller,
configure the L2SRAM, then copy the second stage image to L2SRAM and
jump to it. The second stage image is just like the general U-Boot image
to configure all the hardware and boot up to U-Boot command line.
When boot from NAND, the eLBC controller will first load the first stage
image to internal 4K RAM buffer because it's also stored on the NAND
flash. The first stage image, also call 4K NAND loader, will initialize
the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K
NAND loader's code comes from the corresponding nand_spl directory, along
with the code twisted by CONFIG_NAND_SPL.
When boot from eSDHC/eSPI, there's no such a first stage image because
the CPU ROM code does the same work. It will initialize the L2SRAM
according to the config addr/word pairs on the fixed address and
initialize the eSDHC/eSPI controller, then load the second stage image
to L2SRAM and jump to it.
The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the
second stage image for all different bootup methods. It's set in the
board config file when one of the bootup methods above is selected.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
In future Book-E implementations IVORs will most likely go away and be
replaced with fixed offsets. The IVPR will continue to exist to allow
for relocation of the interrupt vectors.
This code adds support to setup the IVORs as their fixed offset values
per the ISA 2.06 spec when we transition from u-boot to another OS
either via 'bootm' or a cpu release.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
On CoreNet style platforms the timebase frequency is the bus frequency
defined by 16 (on PQ3 it is divide by 8). Also on the CoreNet platforms
the core not longer controls the enabling of the timebase. We now need
to enable the boot core's timebase via CCSR register writes.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
We should make sure to clear MSR[ME, CE, DE] when we boot an OS image
since we have changed the exception vectors and the OSes vectors might
not be setup we should avoid async interrupts at all costs.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Use write_tlb and don't use memset so we can use the same code for
cpu_init_early_f between NAND SPL and not.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch
implements these three bootup methods in a unified way - all of these
use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM
which lets us use the SPD to initialize the SDRAM.
For all three bootup methods, the bootup process can be divided into two
stages: the first stage will initialize the corresponding controller,
configure the L2SRAM, then copy the second stage image to L2SRAM and
jump to it. The second stage image is just like the general U-Boot image
to configure all the hardware and boot up to U-Boot command line.
When boot from NAND, the eLBC controller will first load the first stage
image to internal 4K RAM buffer because it's also stored on the NAND
flash. The first stage image, also call 4K NAND loader, will initialize
the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K
NAND loader's code comes from the corresponding nand_spl directory, along
with the code twisted by CONFIG_NAND_SPL.
When boot from eSDHC/eSPI, there's no such a first stage image because
the CPU ROM code does the same work. It will initialize the L2SRAM
according to the config addr/word pairs on the fixed address and
initialize the eSDHC/eSPI controller, then load the second stage image
to L2SRAM and jump to it.
The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the
second stage image for all different bootup methods. It's set in the
board config file when one of the bootup methods above is selected.
Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
In future Book-E implementations IVORs will most likely go away and be
replaced with fixed offsets. The IVPR will continue to exist to allow
for relocation of the interrupt vectors.
This code adds support to setup the IVORs as their fixed offset values
per the ISA 2.06 spec when we transition from u-boot to another OS
either via 'bootm' or a cpu release.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Moved up the initialization of GD so C code like set_tlb() can use
gd->flags to determine if we've relocated or not in the future.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Andy Fleming <afleming@freescale.com>
If the virtual address for CCSRBAR is the same after relocation but
the physical address is changing we'd end up having two TLB entries with
the same VA. Instead we new us the new CCSRBAR virt address + 4k as a
temp virt address to access the old CCSRBAR to relocate it.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Acked-by: Andy Fleming <afleming@freescale.com>