upstream u-boot with additional patches for our devices/boards: https://lists.denx.de/pipermail/u-boot/2017-March/282789.html (AXP crashes) ; Gbit ethernet patch for some LIME2 revisions ; with SPI flash support
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
u-boot/arch/powerpc/cpu/mpc85xx/start.S

1579 lines
37 KiB

/*
* Copyright 2004, 2007-2011 Freescale Semiconductor, Inc.
* Copyright (C) 2003 Motorola,Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* U-Boot Startup Code for Motorola 85xx PowerPC based Embedded Boards
*
* The processor starts at 0xfffffffc and the code is first executed in the
* last 4K page(0xfffff000-0xffffffff) in flash/rom.
*
*/
#include <asm-offsets.h>
#include <config.h>
#include <mpc85xx.h>
#include <version.h>
#define _LINUX_CONFIG_H 1 /* avoid reading Linux autoconf.h file */
#include <ppc_asm.tmpl>
#include <ppc_defs.h>
#include <asm/cache.h>
#include <asm/mmu.h>
#undef MSR_KERNEL
#define MSR_KERNEL ( MSR_ME ) /* Machine Check */
/*
* Set up GOT: Global Offset Table
*
* Use r12 to access the GOT
*/
START_GOT
GOT_ENTRY(_GOT2_TABLE_)
GOT_ENTRY(_FIXUP_TABLE_)
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#ifndef CONFIG_NAND_SPL
GOT_ENTRY(_start)
GOT_ENTRY(_start_of_vectors)
GOT_ENTRY(_end_of_vectors)
GOT_ENTRY(transfer_to_handler)
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#endif
GOT_ENTRY(__init_end)
GOT_ENTRY(__bss_end__)
GOT_ENTRY(__bss_start)
END_GOT
/*
* e500 Startup -- after reset only the last 4KB of the effective
* address space is mapped in the MMU L2 TLB1 Entry0. The .bootpg
* section is located at THIS LAST page and basically does three
* things: clear some registers, set up exception tables and
* add more TLB entries for 'larger spaces'(e.g. the boot rom) to
* continue the boot procedure.
* Once the boot rom is mapped by TLB entries we can proceed
* with normal startup.
*
*/
.section .bootpg,"ax"
.globl _start_e500
_start_e500:
#if defined(CONFIG_SECURE_BOOT) && defined(CONFIG_E500MC)
/* ISBC uses L2 as stack.
* Disable L2 cache here so that u-boot can enable it later
* as part of it's normal flow
*/
/* Check if L2 is enabled */
mfspr r3, SPRN_L2CSR0
lis r2, L2CSR0_L2E@h
ori r2, r2, L2CSR0_L2E@l
and. r4, r3, r2
beq l2_disabled
mfspr r3, SPRN_L2CSR0
/* Flush L2 cache */
lis r2,(L2CSR0_L2FL)@h
ori r2, r2, (L2CSR0_L2FL)@l
or r3, r2, r3
sync
isync
mtspr SPRN_L2CSR0,r3
isync
1:
mfspr r3, SPRN_L2CSR0
and. r1, r3, r2
bne 1b
mfspr r3, SPRN_L2CSR0
lis r2, L2CSR0_L2E@h
ori r2, r2, L2CSR0_L2E@l
andc r4, r3, r2
sync
isync
mtspr SPRN_L2CSR0,r4
isync
l2_disabled:
#endif
/* clear registers/arrays not reset by hardware */
/* L1 */
li r0,2
mtspr L1CSR0,r0 /* invalidate d-cache */
mtspr L1CSR1,r0 /* invalidate i-cache */
mfspr r1,DBSR
mtspr DBSR,r1 /* Clear all valid bits */
/*
* Enable L1 Caches early
*
*/
#if defined(CONFIG_E500MC) && defined(CONFIG_SYS_CACHE_STASHING)
/* set stash id to (coreID) * 2 + 32 + L1 CT (0) */
li r2,(32 + 0)
mtspr L1CSR2,r2
#endif
/* Enable/invalidate the I-Cache */
lis r2,(L1CSR1_ICFI|L1CSR1_ICLFR)@h
ori r2,r2,(L1CSR1_ICFI|L1CSR1_ICLFR)@l
mtspr SPRN_L1CSR1,r2
1:
mfspr r3,SPRN_L1CSR1
and. r1,r3,r2
bne 1b
lis r3,(L1CSR1_CPE|L1CSR1_ICE)@h
ori r3,r3,(L1CSR1_CPE|L1CSR1_ICE)@l
mtspr SPRN_L1CSR1,r3
isync
2:
mfspr r3,SPRN_L1CSR1
andi. r1,r3,L1CSR1_ICE@l
beq 2b
/* Enable/invalidate the D-Cache */
lis r2,(L1CSR0_DCFI|L1CSR0_DCLFR)@h
ori r2,r2,(L1CSR0_DCFI|L1CSR0_DCLFR)@l
mtspr SPRN_L1CSR0,r2
1:
mfspr r3,SPRN_L1CSR0
and. r1,r3,r2
bne 1b
lis r3,(L1CSR0_CPE|L1CSR0_DCE)@h
ori r3,r3,(L1CSR0_CPE|L1CSR0_DCE)@l
mtspr SPRN_L1CSR0,r3
isync
2:
mfspr r3,SPRN_L1CSR0
andi. r1,r3,L1CSR0_DCE@l
beq 2b
/* Setup interrupt vectors */
lis r1,CONFIG_SYS_MONITOR_BASE@h
mtspr IVPR,r1
li r1,0x0100
mtspr IVOR0,r1 /* 0: Critical input */
li r1,0x0200
mtspr IVOR1,r1 /* 1: Machine check */
li r1,0x0300
mtspr IVOR2,r1 /* 2: Data storage */
li r1,0x0400
mtspr IVOR3,r1 /* 3: Instruction storage */
li r1,0x0500
mtspr IVOR4,r1 /* 4: External interrupt */
li r1,0x0600
mtspr IVOR5,r1 /* 5: Alignment */
li r1,0x0700
mtspr IVOR6,r1 /* 6: Program check */
li r1,0x0800
mtspr IVOR7,r1 /* 7: floating point unavailable */
li r1,0x0900
mtspr IVOR8,r1 /* 8: System call */
/* 9: Auxiliary processor unavailable(unsupported) */
li r1,0x0a00
mtspr IVOR10,r1 /* 10: Decrementer */
li r1,0x0b00
mtspr IVOR11,r1 /* 11: Interval timer */
li r1,0x0c00
mtspr IVOR12,r1 /* 12: Watchdog timer */
li r1,0x0d00
mtspr IVOR13,r1 /* 13: Data TLB error */
li r1,0x0e00
mtspr IVOR14,r1 /* 14: Instruction TLB error */
li r1,0x0f00
mtspr IVOR15,r1 /* 15: Debug */
/* Clear and set up some registers. */
li r0,0x0000
lis r1,0xffff
mtspr DEC,r0 /* prevent dec exceptions */
mttbl r0 /* prevent fit & wdt exceptions */
mttbu r0
mtspr TSR,r1 /* clear all timer exception status */
mtspr TCR,r0 /* disable all */
mtspr ESR,r0 /* clear exception syndrome register */
mtspr MCSR,r0 /* machine check syndrome register */
mtxer r0 /* clear integer exception register */
#ifdef CONFIG_SYS_BOOK3E_HV
mtspr MAS8,r0 /* make sure MAS8 is clear */
#endif
/* Enable Time Base and Select Time Base Clock */
lis r0,HID0_EMCP@h /* Enable machine check */
#if defined(CONFIG_ENABLE_36BIT_PHYS)
ori r0,r0,HID0_ENMAS7@l /* Enable MAS7 */
#endif
#ifndef CONFIG_E500MC
ori r0,r0,HID0_TBEN@l /* Enable Timebase */
#endif
mtspr HID0,r0
#ifndef CONFIG_E500MC
li r0,(HID1_ASTME|HID1_ABE)@l /* Addr streaming & broadcast */
mfspr r3,PVR
andi. r3,r3, 0xff
cmpwi r3,0x50@l /* if we are rev 5.0 or greater set MBDD */
blt 1f
/* Set MBDD bit also */
ori r0, r0, HID1_MBDD@l
1:
mtspr HID1,r0
#endif
#ifdef CONFIG_SYS_FSL_ERRATUM_CPU_A003999
mfspr r3,977
oris r3,r3,0x0100
mtspr 977,r3
#endif
/* Enable Branch Prediction */
#if defined(CONFIG_BTB)
lis r0,BUCSR_ENABLE@h
ori r0,r0,BUCSR_ENABLE@l
mtspr SPRN_BUCSR,r0
#endif
#if defined(CONFIG_SYS_INIT_DBCR)
lis r1,0xffff
ori r1,r1,0xffff
mtspr DBSR,r1 /* Clear all status bits */
lis r0,CONFIG_SYS_INIT_DBCR@h /* DBCR0[IDM] must be set */
ori r0,r0,CONFIG_SYS_INIT_DBCR@l
mtspr DBCR0,r0
#endif
#ifdef CONFIG_MPC8569
#define CONFIG_SYS_LBC_ADDR (CONFIG_SYS_CCSRBAR_DEFAULT + 0x5000)
#define CONFIG_SYS_LBCR_ADDR (CONFIG_SYS_LBC_ADDR + 0xd0)
/* MPC8569 Rev.0 silcon needs to set bit 13 of LBCR to allow elBC to
* use address space which is more than 12bits, and it must be done in
* the 4K boot page. So we set this bit here.
*/
/* create a temp mapping TLB0[0] for LBCR */
lis r6,FSL_BOOKE_MAS0(0, 0, 0)@h
ori r6,r6,FSL_BOOKE_MAS0(0, 0, 0)@l
lis r7,FSL_BOOKE_MAS1(1, 0, 0, 0, BOOKE_PAGESZ_4K)@h
ori r7,r7,FSL_BOOKE_MAS1(1, 0, 0, 0, BOOKE_PAGESZ_4K)@l
lis r8,FSL_BOOKE_MAS2(CONFIG_SYS_LBC_ADDR, MAS2_I|MAS2_G)@h
ori r8,r8,FSL_BOOKE_MAS2(CONFIG_SYS_LBC_ADDR, MAS2_I|MAS2_G)@l
lis r9,FSL_BOOKE_MAS3(CONFIG_SYS_LBC_ADDR, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(CONFIG_SYS_LBC_ADDR, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@l
mtspr MAS0,r6
mtspr MAS1,r7
mtspr MAS2,r8
mtspr MAS3,r9
isync
msync
tlbwe
/* Set LBCR register */
lis r4,CONFIG_SYS_LBCR_ADDR@h
ori r4,r4,CONFIG_SYS_LBCR_ADDR@l
lis r5,CONFIG_SYS_LBC_LBCR@h
ori r5,r5,CONFIG_SYS_LBC_LBCR@l
stw r5,0(r4)
isync
/* invalidate this temp TLB */
lis r4,CONFIG_SYS_LBC_ADDR@h
ori r4,r4,CONFIG_SYS_LBC_ADDR@l
tlbivax 0,r4
isync
#endif /* CONFIG_MPC8569 */
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
/*
* Search for the TLB that covers the code we're executing, and shrink it
* so that it covers only this 4K page. That will ensure that any other
* TLB we create won't interfere with it. We assume that the TLB exists,
* which is why we don't check the Valid bit of MAS1.
*
* This is necessary, for example, when booting from the on-chip ROM,
* which (oddly) creates a single 4GB TLB that covers CCSR and DDR.
* If we don't shrink this TLB now, then we'll accidentally delete it
* in "purge_old_ccsr_tlb" below.
*/
bl nexti /* Find our address */
nexti: mflr r1 /* R1 = our PC */
li r2, 0
mtspr MAS6, r2 /* Assume the current PID and AS are 0 */
isync
msync
tlbsx 0, r1 /* This must succeed */
/* Set the size of the TLB to 4KB */
mfspr r3, MAS1
li r2, 0xF00
andc r3, r3, r2 /* Clear the TSIZE bits */
ori r3, r3, MAS1_TSIZE(BOOKE_PAGESZ_4K)@l
mtspr MAS1, r3
/*
* Set the base address of the TLB to our PC. We assume that
* virtual == physical. We also assume that MAS2_EPN == MAS3_RPN.
*/
lis r3, MAS2_EPN@h
ori r3, r3, MAS2_EPN@l /* R3 = MAS2_EPN */
and r1, r1, r3 /* Our PC, rounded down to the nearest page */
mfspr r2, MAS2
andc r2, r2, r3
or r2, r2, r1
mtspr MAS2, r2 /* Set the EPN to our PC base address */
mfspr r2, MAS3
andc r2, r2, r3
or r2, r2, r1
mtspr MAS3, r2 /* Set the RPN to our PC base address */
isync
msync
tlbwe
/*
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
* Relocate CCSR, if necessary. We relocate CCSR if (obviously) the default
* location is not where we want it. This typically happens on a 36-bit
* system, where we want to move CCSR to near the top of 36-bit address space.
*
* To move CCSR, we create two temporary TLBs, one for the old location, and
* another for the new location. On CoreNet systems, we also need to create
* a special, temporary LAW.
*
* As a general rule, TLB0 is used for short-term TLBs, and TLB1 is used for
* long-term TLBs, so we use TLB0 here.
*/
#if (CONFIG_SYS_CCSRBAR_DEFAULT != CONFIG_SYS_CCSRBAR_PHYS)
#if !defined(CONFIG_SYS_CCSRBAR_PHYS_HIGH) || !defined(CONFIG_SYS_CCSRBAR_PHYS_LOW)
#error "CONFIG_SYS_CCSRBAR_PHYS_HIGH and CONFIG_SYS_CCSRBAR_PHYS_LOW) must be defined."
#endif
purge_old_ccsr_tlb:
lis r8, CONFIG_SYS_CCSRBAR@h
ori r8, r8, CONFIG_SYS_CCSRBAR@l
lis r9, (CONFIG_SYS_CCSRBAR + 0x1000)@h
ori r9, r9, (CONFIG_SYS_CCSRBAR + 0x1000)@l
/*
* In a multi-stage boot (e.g. NAND boot), a previous stage may have
* created a TLB for CCSR, which will interfere with our relocation
* code. Since we're going to create a new TLB for CCSR anyway,
* it should be safe to delete this old TLB here. We have to search
* for it, though.
*/
li r1, 0
mtspr MAS6, r1 /* Search the current address space and PID */
isync
msync
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
tlbsx 0, r8
mfspr r1, MAS1
andis. r2, r1, MAS1_VALID@h /* Check for the Valid bit */
beq 1f /* Skip if no TLB found */
rlwinm r1, r1, 0, 1, 31 /* Clear Valid bit */
mtspr MAS1, r1
isync
msync
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
tlbwe
1:
create_ccsr_new_tlb:
/*
* Create a TLB for the new location of CCSR. Register R8 is reserved
* for the virtual address of this TLB (CONFIG_SYS_CCSRBAR).
*/
lis r0, FSL_BOOKE_MAS0(0, 0, 0)@h
ori r0, r0, FSL_BOOKE_MAS0(0, 0, 0)@l
lis r1, FSL_BOOKE_MAS1(1, 0, 0, 0, BOOKE_PAGESZ_4K)@h
ori r1, r1, FSL_BOOKE_MAS1(1, 0, 0, 0, BOOKE_PAGESZ_4K)@l
lis r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR, (MAS2_I|MAS2_G))@h
ori r2, r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR, (MAS2_I|MAS2_G))@l
lis r3, FSL_BOOKE_MAS3(CONFIG_SYS_CCSRBAR_PHYS_LOW, 0, (MAS3_SW|MAS3_SR))@h
ori r3, r3, FSL_BOOKE_MAS3(CONFIG_SYS_CCSRBAR_PHYS_LOW, 0, (MAS3_SW|MAS3_SR))@l
lis r7, CONFIG_SYS_CCSRBAR_PHYS_HIGH@h
ori r7, r7, CONFIG_SYS_CCSRBAR_PHYS_HIGH@l
mtspr MAS0, r0
mtspr MAS1, r1
mtspr MAS2, r2
mtspr MAS3, r3
mtspr MAS7, r7
isync
msync
tlbwe
/*
* Create a TLB for the current location of CCSR. Register R9 is reserved
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
* for the virtual address of this TLB (CONFIG_SYS_CCSRBAR + 0x1000).
*/
create_ccsr_old_tlb:
lis r0, FSL_BOOKE_MAS0(0, 1, 0)@h
ori r0, r0, FSL_BOOKE_MAS0(0, 1, 0)@l
lis r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR + 0x1000, (MAS2_I|MAS2_G))@h
ori r2, r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR + 0x1000, (MAS2_I|MAS2_G))@l
lis r3, FSL_BOOKE_MAS3(CONFIG_SYS_CCSRBAR_DEFAULT, 0, (MAS3_SW|MAS3_SR))@h
ori r3, r3, FSL_BOOKE_MAS3(CONFIG_SYS_CCSRBAR_DEFAULT, 0, (MAS3_SW|MAS3_SR))@l
li r7, 0 /* The default CCSR address is always a 32-bit number */
mtspr MAS0, r0
/* MAS1 is the same as above */
mtspr MAS2, r2
mtspr MAS3, r3
mtspr MAS7, r7
isync
msync
tlbwe
/*
* We have a TLB for what we think is the current (old) CCSR. Let's
* verify that, otherwise we won't be able to move it.
* CONFIG_SYS_CCSRBAR_DEFAULT is always a 32-bit number, so we only
* need to compare the lower 32 bits of CCSRBAR on CoreNet systems.
*/
verify_old_ccsr:
lis r0, CONFIG_SYS_CCSRBAR_DEFAULT@h
ori r0, r0, CONFIG_SYS_CCSRBAR_DEFAULT@l
#ifdef CONFIG_FSL_CORENET
lwz r1, 4(r9) /* CCSRBARL */
#else
lwz r1, 0(r9) /* CCSRBAR, shifted right by 12 */
slwi r1, r1, 12
#endif
cmpl 0, r0, r1
/*
* If the value we read from CCSRBARL is not what we expect, then
* enter an infinite loop. This will at least allow a debugger to
* halt execution and examine TLBs, etc. There's no point in going
* on.
*/
infinite_debug_loop:
bne infinite_debug_loop
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
#ifdef CONFIG_FSL_CORENET
#define CCSR_LAWBARH0 (CONFIG_SYS_CCSRBAR + 0x1000)
#define LAW_EN 0x80000000
#define LAW_SIZE_4K 0xb
#define CCSRBAR_LAWAR (LAW_EN | (0x1e << 20) | LAW_SIZE_4K)
#define CCSRAR_C 0x80000000 /* Commit */
create_temp_law:
/*
* On CoreNet systems, we create the temporary LAW using a special LAW
* target ID of 0x1e. LAWBARH is at offset 0xc00 in CCSR.
*/
lis r0, CONFIG_SYS_CCSRBAR_PHYS_HIGH@h
ori r0, r0, CONFIG_SYS_CCSRBAR_PHYS_HIGH@l
lis r1, CONFIG_SYS_CCSRBAR_PHYS_LOW@h
ori r1, r1, CONFIG_SYS_CCSRBAR_PHYS_LOW@l
lis r2, CCSRBAR_LAWAR@h
ori r2, r2, CCSRBAR_LAWAR@l
stw r0, 0xc00(r9) /* LAWBARH0 */
stw r1, 0xc04(r9) /* LAWBARL0 */
sync
stw r2, 0xc08(r9) /* LAWAR0 */
/*
* Read back from LAWAR to ensure the update is complete. e500mc
* cores also require an isync.
*/
lwz r0, 0xc08(r9) /* LAWAR0 */
isync
/*
* Read the current CCSRBARH and CCSRBARL using load word instructions.
* Follow this with an isync instruction. This forces any outstanding
* accesses to configuration space to completion.
*/
read_old_ccsrbar:
lwz r0, 0(r9) /* CCSRBARH */
lwz r0, 4(r9) /* CCSRBARL */
powerpc/85xx: relocate CCSR before creating the initial RAM area Before main memory (DDR) is initialized, the on-chip L1 cache is used as a memory area for the stack and the global data (gd_t) structure. This is called the initial RAM area, or initram. The L1 cache is locked and the TLBs point to a non-existent address (so that there's no chance it will overlap main memory or any device). The L1 cache is also configured not to write out to memory or the L2 cache, so everything stays in the L1 cache. One of the things we might do while running out of initram is relocate CCSR. On reset, CCSR is typically located at some high 32-bit address, like 0xfe000000, and this may not be the best place for CCSR. For example, on 36-bit systems, CCSR is relocated to 0xffe000000, near the top of 36-bit memory space. On some future Freescale SOCs, the L1 cache will be forced to write to the backing store, so we can no longer have the TLBs point to non-existent address. Instead, we will point the TLBs to an unused area in CCSR. In order for this technique to work, CCSR needs to be relocated before the initram memory is enabled. Unlike the original CCSR relocation code in cpu_init_early_f(), the TLBs we create now for relocating CCSR are deleted after the relocation is finished. cpu_init_early_f() will still need to create a TLB for CCSR (at the new location) for normal U-Boot purposes. This is done to keep the impact to existing U-Boot code minimal and to better isolate the CCSR relocation code. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
14 years ago
isync
/*
* Write the new values for CCSRBARH and CCSRBARL to their old
* locations. The CCSRBARH has a shadow register. When the CCSRBARH
* has a new value written it loads a CCSRBARH shadow register. When
* the CCSRBARL is written, the CCSRBARH shadow register contents
* along with the CCSRBARL value are loaded into the CCSRBARH and
* CCSRBARL registers, respectively. Follow this with a sync
* instruction.
*/
write_new_ccsrbar:
lis r0, CONFIG_SYS_CCSRBAR_PHYS_HIGH@h
ori r0, r0, CONFIG_SYS_CCSRBAR_PHYS_HIGH@l
lis r1, CONFIG_SYS_CCSRBAR_PHYS_LOW@h
ori r1, r1, CONFIG_SYS_CCSRBAR_PHYS_LOW@l
lis r2, CCSRAR_C@h
ori r2, r2, CCSRAR_C@l
stw r0, 0(r9) /* Write to CCSRBARH */
sync /* Make sure we write to CCSRBARH first */
stw r1, 4(r9) /* Write to CCSRBARL */
sync
/*
* Write a 1 to the commit bit (C) of CCSRAR at the old location.
* Follow this with a sync instruction.
*/
stw r2, 8(r9)
sync
/* Delete the temporary LAW */
delete_temp_law:
li r1, 0
stw r1, 0xc08(r8)
sync
stw r1, 0xc00(r8)
stw r1, 0xc04(r8)
sync
#else /* #ifdef CONFIG_FSL_CORENET */
write_new_ccsrbar:
/*
* Read the current value of CCSRBAR using a load word instruction
* followed by an isync. This forces all accesses to configuration
* space to complete.
*/
sync
lwz r0, 0(r9)
isync
/* CONFIG_SYS_CCSRBAR_PHYS right shifted by 12 */
#define CCSRBAR_PHYS_RS12 ((CONFIG_SYS_CCSRBAR_PHYS_HIGH << 20) | \
(CONFIG_SYS_CCSRBAR_PHYS_LOW >> 12))
/* Write the new value to CCSRBAR. */
lis r0, CCSRBAR_PHYS_RS12@h
ori r0, r0, CCSRBAR_PHYS_RS12@l
stw r0, 0(r9)
sync
/*
* The manual says to perform a load of an address that does not
* access configuration space or the on-chip SRAM using an existing TLB,
* but that doesn't appear to be necessary. We will do the isync,
* though.
*/
isync
/*
* Read the contents of CCSRBAR from its new location, followed by
* another isync.
*/
lwz r0, 0(r8)
isync
#endif /* #ifdef CONFIG_FSL_CORENET */
/* Delete the temporary TLBs */
delete_temp_tlbs:
lis r0, FSL_BOOKE_MAS0(0, 0, 0)@h
ori r0, r0, FSL_BOOKE_MAS0(0, 0, 0)@l
li r1, 0
lis r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR, (MAS2_I|MAS2_G))@h
ori r2, r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR, (MAS2_I|MAS2_G))@l
mtspr MAS0, r0
mtspr MAS1, r1
mtspr MAS2, r2
isync
msync
tlbwe
lis r0, FSL_BOOKE_MAS0(0, 1, 0)@h
ori r0, r0, FSL_BOOKE_MAS0(0, 1, 0)@l
lis r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR + 0x1000, (MAS2_I|MAS2_G))@h
ori r2, r2, FSL_BOOKE_MAS2(CONFIG_SYS_CCSRBAR + 0x1000, (MAS2_I|MAS2_G))@l
mtspr MAS0, r0
mtspr MAS2, r2
isync
msync
tlbwe
#endif /* #if (CONFIG_SYS_CCSRBAR_DEFAULT != CONFIG_SYS_CCSRBAR_PHYS) */
create_init_ram_area:
lis r6,FSL_BOOKE_MAS0(1, 15, 0)@h
ori r6,r6,FSL_BOOKE_MAS0(1, 15, 0)@l
#if !defined(CONFIG_SYS_RAMBOOT) && !defined(CONFIG_SECURE_BOOT)
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
/* create a temp mapping in AS=1 to the 4M boot window */
lis r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_4M)@h
ori r7,r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_4M)@l
lis r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE & 0xffc00000, (MAS2_I|MAS2_G))@h
ori r8,r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE & 0xffc00000, (MAS2_I|MAS2_G))@l
/* The 85xx has the default boot window 0xff800000 - 0xffffffff */
lis r9,FSL_BOOKE_MAS3(0xffc00000, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(0xffc00000, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@l
#elif !defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SECURE_BOOT)
/* create a temp mapping in AS = 1 for Flash mapping
* created by PBL for ISBC code
*/
lis r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_1M)@h
ori r7,r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_1M)@l
lis r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE, (MAS2_I|MAS2_G))@h
ori r8,r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE, (MAS2_I|MAS2_G))@l
lis r9,FSL_BOOKE_MAS3(CONFIG_SYS_PBI_FLASH_WINDOW, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(CONFIG_SYS_PBI_FLASH_WINDOW, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@l
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#else
/*
* create a temp mapping in AS=1 to the 1M CONFIG_SYS_MONITOR_BASE space, the main
* image has been relocated to CONFIG_SYS_MONITOR_BASE on the second stage.
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
*/
lis r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_1M)@h
ori r7,r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_1M)@l
lis r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE, (MAS2_I|MAS2_G))@h
ori r8,r8,FSL_BOOKE_MAS2(CONFIG_SYS_MONITOR_BASE, (MAS2_I|MAS2_G))@l
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
lis r9,FSL_BOOKE_MAS3(CONFIG_SYS_MONITOR_BASE, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(CONFIG_SYS_MONITOR_BASE, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@l
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#endif
mtspr MAS0,r6
mtspr MAS1,r7
mtspr MAS2,r8
mtspr MAS3,r9
isync
msync
tlbwe
/* create a temp mapping in AS=1 to the stack */
lis r6,FSL_BOOKE_MAS0(1, 14, 0)@h
ori r6,r6,FSL_BOOKE_MAS0(1, 14, 0)@l
lis r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_16K)@h
ori r7,r7,FSL_BOOKE_MAS1(1, 1, 0, 1, BOOKE_PAGESZ_16K)@l
lis r8,FSL_BOOKE_MAS2(CONFIG_SYS_INIT_RAM_ADDR, 0)@h
ori r8,r8,FSL_BOOKE_MAS2(CONFIG_SYS_INIT_RAM_ADDR, 0)@l
#if defined(CONFIG_SYS_INIT_RAM_ADDR_PHYS_LOW) && \
defined(CONFIG_SYS_INIT_RAM_ADDR_PHYS_HIGH)
lis r9,FSL_BOOKE_MAS3(CONFIG_SYS_INIT_RAM_ADDR_PHYS_LOW, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(CONFIG_SYS_INIT_RAM_ADDR_PHYS_LOW, 0,
(MAS3_SX|MAS3_SW|MAS3_SR))@l
li r10,CONFIG_SYS_INIT_RAM_ADDR_PHYS_HIGH
mtspr MAS7,r10
#else
lis r9,FSL_BOOKE_MAS3(CONFIG_SYS_INIT_RAM_ADDR, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@h
ori r9,r9,FSL_BOOKE_MAS3(CONFIG_SYS_INIT_RAM_ADDR, 0, (MAS3_SX|MAS3_SW|MAS3_SR))@l
#endif
mtspr MAS0,r6
mtspr MAS1,r7
mtspr MAS2,r8
mtspr MAS3,r9
isync
msync
tlbwe
lis r6,MSR_IS|MSR_DS@h
ori r6,r6,MSR_IS|MSR_DS@l
lis r7,switch_as@h
ori r7,r7,switch_as@l
mtspr SPRN_SRR0,r7
mtspr SPRN_SRR1,r6
rfi
switch_as:
/* L1 DCache is used for initial RAM */
/* Allocate Initial RAM in data cache.
*/
lis r3,CONFIG_SYS_INIT_RAM_ADDR@h
ori r3,r3,CONFIG_SYS_INIT_RAM_ADDR@l
mfspr r2, L1CFG0
andi. r2, r2, 0x1ff
/* cache size * 1024 / (2 * L1 line size) */
slwi r2, r2, (10 - 1 - L1_CACHE_SHIFT)
mtctr r2
li r0,0
1:
dcbz r0,r3
dcbtls 0,r0,r3
addi r3,r3,CONFIG_SYS_CACHELINE_SIZE
bdnz 1b
/* Jump out the last 4K page and continue to 'normal' start */
#ifdef CONFIG_SYS_RAMBOOT
b _start_cont
#else
/* Calculate absolute address in FLASH and jump there */
/*--------------------------------------------------------------*/
lis r3,CONFIG_SYS_MONITOR_BASE@h
ori r3,r3,CONFIG_SYS_MONITOR_BASE@l
addi r3,r3,_start_cont - _start + _START_OFFSET
mtlr r3
blr
#endif
.text
.globl _start
_start:
.long 0x27051956 /* U-BOOT Magic Number */
.globl version_string
version_string:
.ascii U_BOOT_VERSION_STRING, "\0"
.align 4
.globl _start_cont
_start_cont:
/* Setup the stack in initial RAM,could be L2-as-SRAM or L1 dcache*/
lis r1,CONFIG_SYS_INIT_RAM_ADDR@h
ori r1,r1,CONFIG_SYS_INIT_SP_OFFSET@l
li r0,0
stwu r0,-4(r1)
stwu r0,-4(r1) /* Terminate call chain */
stwu r1,-8(r1) /* Save back chain and move SP */
lis r0,RESET_VECTOR@h /* Address of reset vector */
ori r0,r0,RESET_VECTOR@l
stwu r1,-8(r1) /* Save back chain and move SP */
stw r0,+12(r1) /* Save return addr (underflow vect) */
GET_GOT
bl cpu_init_early_f
/* switch back to AS = 0 */
lis r3,(MSR_CE|MSR_ME|MSR_DE)@h
ori r3,r3,(MSR_CE|MSR_ME|MSR_DE)@l
mtmsr r3
isync
bl cpu_init_f
bl board_init_f
isync
/* NOTREACHED - board_init_f() does not return */
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#ifndef CONFIG_NAND_SPL
. = EXC_OFF_SYS_RESET
.globl _start_of_vectors
_start_of_vectors:
/* Critical input. */
CRIT_EXCEPTION(0x0100, CriticalInput, CritcalInputException)
/* Machine check */
MCK_EXCEPTION(0x200, MachineCheck, MachineCheckException)
/* Data Storage exception. */
STD_EXCEPTION(0x0300, DataStorage, UnknownException)
/* Instruction Storage exception. */
STD_EXCEPTION(0x0400, InstStorage, UnknownException)
/* External Interrupt exception. */
STD_EXCEPTION(0x0500, ExtInterrupt, ExtIntException)
/* Alignment exception. */
. = 0x0600
Alignment:
EXCEPTION_PROLOG(SRR0, SRR1)
mfspr r4,DAR
stw r4,_DAR(r21)
mfspr r5,DSISR
stw r5,_DSISR(r21)
addi r3,r1,STACK_FRAME_OVERHEAD
EXC_XFER_TEMPLATE(Alignment, AlignmentException, MSR_KERNEL, COPY_EE)
/* Program check exception */
. = 0x0700
ProgramCheck:
EXCEPTION_PROLOG(SRR0, SRR1)
addi r3,r1,STACK_FRAME_OVERHEAD
EXC_XFER_TEMPLATE(ProgramCheck, ProgramCheckException,
MSR_KERNEL, COPY_EE)
/* No FPU on MPC85xx. This exception is not supposed to happen.
*/
STD_EXCEPTION(0x0800, FPUnavailable, UnknownException)
. = 0x0900
/*
* r0 - SYSCALL number
* r3-... arguments
*/
SystemCall:
addis r11,r0,0 /* get functions table addr */
ori r11,r11,0 /* Note: this code is patched in trap_init */
addis r12,r0,0 /* get number of functions */
ori r12,r12,0
cmplw 0,r0,r12
bge 1f
rlwinm r0,r0,2,0,31 /* fn_addr = fn_tbl[r0] */
add r11,r11,r0
lwz r11,0(r11)
li r20,0xd00-4 /* Get stack pointer */
lwz r12,0(r20)
subi r12,r12,12 /* Adjust stack pointer */
li r0,0xc00+_end_back-SystemCall
cmplw 0,r0,r12 /* Check stack overflow */
bgt 1f
stw r12,0(r20)
mflr r0
stw r0,0(r12)
mfspr r0,SRR0
stw r0,4(r12)
mfspr r0,SRR1
stw r0,8(r12)
li r12,0xc00+_back-SystemCall
mtlr r12
mtspr SRR0,r11
1: SYNC
rfi
_back:
mfmsr r11 /* Disable interrupts */
li r12,0
ori r12,r12,MSR_EE
andc r11,r11,r12
SYNC /* Some chip revs need this... */
mtmsr r11
SYNC
li r12,0xd00-4 /* restore regs */
lwz r12,0(r12)
lwz r11,0(r12)
mtlr r11
lwz r11,4(r12)
mtspr SRR0,r11
lwz r11,8(r12)
mtspr SRR1,r11
addi r12,r12,12 /* Adjust stack pointer */
li r20,0xd00-4
stw r12,0(r20)
SYNC
rfi
_end_back:
STD_EXCEPTION(0x0a00, Decrementer, timer_interrupt)
STD_EXCEPTION(0x0b00, IntervalTimer, UnknownException)
STD_EXCEPTION(0x0c00, WatchdogTimer, UnknownException)
STD_EXCEPTION(0x0d00, DataTLBError, UnknownException)
STD_EXCEPTION(0x0e00, InstructionTLBError, UnknownException)
CRIT_EXCEPTION(0x0f00, DebugBreakpoint, DebugException )
.globl _end_of_vectors
_end_of_vectors:
. = . + (0x100 - ( . & 0xff )) /* align for debug */
/*
* This code finishes saving the registers to the exception frame
* and jumps to the appropriate handler for the exception.
* Register r21 is pointer into trap frame, r1 has new stack pointer.
*/
.globl transfer_to_handler
transfer_to_handler:
stw r22,_NIP(r21)
lis r22,MSR_POW@h
andc r23,r23,r22
stw r23,_MSR(r21)
SAVE_GPR(7, r21)
SAVE_4GPRS(8, r21)
SAVE_8GPRS(12, r21)
SAVE_8GPRS(24, r21)
mflr r23
andi. r24,r23,0x3f00 /* get vector offset */
stw r24,TRAP(r21)
li r22,0
stw r22,RESULT(r21)
mtspr SPRG2,r22 /* r1 is now kernel sp */
lwz r24,0(r23) /* virtual address of handler */
lwz r23,4(r23) /* where to go when done */
mtspr SRR0,r24
mtspr SRR1,r20
mtlr r23
SYNC
rfi /* jump to handler, enable MMU */
int_return:
mfmsr r28 /* Disable interrupts */
li r4,0
ori r4,r4,MSR_EE
andc r28,r28,r4
SYNC /* Some chip revs need this... */
mtmsr r28
SYNC
lwz r2,_CTR(r1)
lwz r0,_LINK(r1)
mtctr r2
mtlr r0
lwz r2,_XER(r1)
lwz r0,_CCR(r1)
mtspr XER,r2
mtcrf 0xFF,r0
REST_10GPRS(3, r1)
REST_10GPRS(13, r1)
REST_8GPRS(23, r1)
REST_GPR(31, r1)
lwz r2,_NIP(r1) /* Restore environment */
lwz r0,_MSR(r1)
mtspr SRR0,r2
mtspr SRR1,r0
lwz r0,GPR0(r1)
lwz r2,GPR2(r1)
lwz r1,GPR1(r1)
SYNC
rfi
crit_return:
mfmsr r28 /* Disable interrupts */
li r4,0
ori r4,r4,MSR_EE
andc r28,r28,r4
SYNC /* Some chip revs need this... */
mtmsr r28
SYNC
lwz r2,_CTR(r1)
lwz r0,_LINK(r1)
mtctr r2
mtlr r0
lwz r2,_XER(r1)
lwz r0,_CCR(r1)
mtspr XER,r2
mtcrf 0xFF,r0
REST_10GPRS(3, r1)
REST_10GPRS(13, r1)
REST_8GPRS(23, r1)
REST_GPR(31, r1)
lwz r2,_NIP(r1) /* Restore environment */
lwz r0,_MSR(r1)
mtspr SPRN_CSRR0,r2
mtspr SPRN_CSRR1,r0
lwz r0,GPR0(r1)
lwz r2,GPR2(r1)
lwz r1,GPR1(r1)
SYNC
rfci
mck_return:
mfmsr r28 /* Disable interrupts */
li r4,0
ori r4,r4,MSR_EE
andc r28,r28,r4
SYNC /* Some chip revs need this... */
mtmsr r28
SYNC
lwz r2,_CTR(r1)
lwz r0,_LINK(r1)
mtctr r2
mtlr r0
lwz r2,_XER(r1)
lwz r0,_CCR(r1)
mtspr XER,r2
mtcrf 0xFF,r0
REST_10GPRS(3, r1)
REST_10GPRS(13, r1)
REST_8GPRS(23, r1)
REST_GPR(31, r1)
lwz r2,_NIP(r1) /* Restore environment */
lwz r0,_MSR(r1)
mtspr SPRN_MCSRR0,r2
mtspr SPRN_MCSRR1,r0
lwz r0,GPR0(r1)
lwz r2,GPR2(r1)
lwz r1,GPR1(r1)
SYNC
rfmci
/* Cache functions.
*/
.globl flush_icache
flush_icache:
.globl invalidate_icache
invalidate_icache:
mfspr r0,L1CSR1
ori r0,r0,L1CSR1_ICFI
msync
isync
mtspr L1CSR1,r0
isync
blr /* entire I cache */
.globl invalidate_dcache
invalidate_dcache:
mfspr r0,L1CSR0
ori r0,r0,L1CSR0_DCFI
msync
isync
mtspr L1CSR0,r0
isync
blr
.globl icache_enable
icache_enable:
mflr r8
bl invalidate_icache
mtlr r8
isync
mfspr r4,L1CSR1
ori r4,r4,0x0001
oris r4,r4,0x0001
mtspr L1CSR1,r4
isync
blr
.globl icache_disable
icache_disable:
mfspr r0,L1CSR1
lis r3,0
ori r3,r3,L1CSR1_ICE
andc r0,r0,r3
mtspr L1CSR1,r0
isync
blr
.globl icache_status
icache_status:
mfspr r3,L1CSR1
andi. r3,r3,L1CSR1_ICE
blr
.globl dcache_enable
dcache_enable:
mflr r8
bl invalidate_dcache
mtlr r8
isync
mfspr r0,L1CSR0
ori r0,r0,0x0001
oris r0,r0,0x0001
msync
isync
mtspr L1CSR0,r0
isync
blr
.globl dcache_disable
dcache_disable:
mfspr r3,L1CSR0
lis r4,0
ori r4,r4,L1CSR0_DCE
andc r3,r3,r4
mtspr L1CSR0,r3
isync
blr
.globl dcache_status
dcache_status:
mfspr r3,L1CSR0
andi. r3,r3,L1CSR0_DCE
blr
.globl get_pir
get_pir:
mfspr r3,PIR
blr
.globl get_pvr
get_pvr:
mfspr r3,PVR
blr
.globl get_svr
get_svr:
mfspr r3,SVR
blr
.globl wr_tcr
wr_tcr:
mtspr TCR,r3
blr
/*------------------------------------------------------------------------------- */
/* Function: in8 */
/* Description: Input 8 bits */
/*------------------------------------------------------------------------------- */
.globl in8
in8:
lbz r3,0x0000(r3)
blr
/*------------------------------------------------------------------------------- */
/* Function: out8 */
/* Description: Output 8 bits */
/*------------------------------------------------------------------------------- */
.globl out8
out8:
stb r4,0x0000(r3)
sync
blr
/*------------------------------------------------------------------------------- */
/* Function: out16 */
/* Description: Output 16 bits */
/*------------------------------------------------------------------------------- */
.globl out16
out16:
sth r4,0x0000(r3)
sync
blr
/*------------------------------------------------------------------------------- */
/* Function: out16r */
/* Description: Byte reverse and output 16 bits */
/*------------------------------------------------------------------------------- */
.globl out16r
out16r:
sthbrx r4,r0,r3
sync
blr
/*------------------------------------------------------------------------------- */
/* Function: out32 */
/* Description: Output 32 bits */
/*------------------------------------------------------------------------------- */
.globl out32
out32:
stw r4,0x0000(r3)
sync
blr
/*------------------------------------------------------------------------------- */
/* Function: out32r */
/* Description: Byte reverse and output 32 bits */
/*------------------------------------------------------------------------------- */
.globl out32r
out32r:
stwbrx r4,r0,r3
sync
blr
/*------------------------------------------------------------------------------- */
/* Function: in16 */
/* Description: Input 16 bits */
/*------------------------------------------------------------------------------- */
.globl in16
in16:
lhz r3,0x0000(r3)
blr
/*------------------------------------------------------------------------------- */
/* Function: in16r */
/* Description: Input 16 bits and byte reverse */
/*------------------------------------------------------------------------------- */
.globl in16r
in16r:
lhbrx r3,r0,r3
blr
/*------------------------------------------------------------------------------- */
/* Function: in32 */
/* Description: Input 32 bits */
/*------------------------------------------------------------------------------- */
.globl in32
in32:
lwz 3,0x0000(3)
blr
/*------------------------------------------------------------------------------- */
/* Function: in32r */
/* Description: Input 32 bits and byte reverse */
/*------------------------------------------------------------------------------- */
.globl in32r
in32r:
lwbrx r3,r0,r3
blr
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#endif /* !CONFIG_NAND_SPL */
/*------------------------------------------------------------------------------*/
/*
* void write_tlb(mas0, mas1, mas2, mas3, mas7)
*/
.globl write_tlb
write_tlb:
mtspr MAS0,r3
mtspr MAS1,r4
mtspr MAS2,r5
mtspr MAS3,r6
#ifdef CONFIG_ENABLE_36BIT_PHYS
mtspr MAS7,r7
#endif
li r3,0
#ifdef CONFIG_SYS_BOOK3E_HV
mtspr MAS8,r3
#endif
isync
tlbwe
msync
isync
blr
/*
* void relocate_code (addr_sp, gd, addr_moni)
*
* This "function" does not return, instead it continues in RAM
* after relocating the monitor code.
*
* r3 = dest
* r4 = src
* r5 = length in bytes
* r6 = cachelinesize
*/
.globl relocate_code
relocate_code:
mr r1,r3 /* Set new stack pointer */
mr r9,r4 /* Save copy of Init Data pointer */
mr r10,r5 /* Save copy of Destination Address */
GET_GOT
mr r3,r5 /* Destination Address */
lis r4,CONFIG_SYS_MONITOR_BASE@h /* Source Address */
ori r4,r4,CONFIG_SYS_MONITOR_BASE@l
lwz r5,GOT(__init_end)
sub r5,r5,r4
li r6,CONFIG_SYS_CACHELINE_SIZE /* Cache Line Size */
/*
* Fix GOT pointer:
*
* New GOT-PTR = (old GOT-PTR - CONFIG_SYS_MONITOR_BASE) + Destination Address
*
* Offset:
*/
sub r15,r10,r4
/* First our own GOT */
add r12,r12,r15
/* the the one used by the C code */
add r30,r30,r15
/*
* Now relocate code
*/
cmplw cr1,r3,r4
addi r0,r5,3
srwi. r0,r0,2
beq cr1,4f /* In place copy is not necessary */
beq 7f /* Protect against 0 count */
mtctr r0
bge cr1,2f
la r8,-4(r4)
la r7,-4(r3)
1: lwzu r0,4(r8)
stwu r0,4(r7)
bdnz 1b
b 4f
2: slwi r0,r0,2
add r8,r4,r0
add r7,r3,r0
3: lwzu r0,-4(r8)
stwu r0,-4(r7)
bdnz 3b
/*
* Now flush the cache: note that we must start from a cache aligned
* address. Otherwise we might miss one cache line.
*/
4: cmpwi r6,0
add r5,r3,r5
beq 7f /* Always flush prefetch queue in any case */
subi r0,r6,1
andc r3,r3,r0
mr r4,r3
5: dcbst 0,r4
add r4,r4,r6
cmplw r4,r5
blt 5b
sync /* Wait for all dcbst to complete on bus */
mr r4,r3
6: icbi 0,r4
add r4,r4,r6
cmplw r4,r5
blt 6b
7: sync /* Wait for all icbi to complete on bus */
isync
/*
* Re-point the IVPR at RAM
*/
mtspr IVPR,r10
/*
* We are done. Do not return, instead branch to second part of board
* initialization, now running from RAM.
*/
addi r0,r10,in_ram - _start + _START_OFFSET
mtlr r0
blr /* NEVER RETURNS! */
.globl in_ram
in_ram:
/*
* Relocation Function, r12 point to got2+0x8000
*
* Adjust got2 pointers, no need to check for 0, this code
* already puts a few entries in the table.
*/
li r0,__got2_entries@sectoff@l
la r3,GOT(_GOT2_TABLE_)
lwz r11,GOT(_GOT2_TABLE_)
mtctr r0
sub r11,r3,r11
addi r3,r3,-4
1: lwzu r0,4(r3)
cmpwi r0,0
beq- 2f
add r0,r0,r11
stw r0,0(r3)
2: bdnz 1b
/*
* Now adjust the fixups and the pointers to the fixups
* in case we need to move ourselves again.
*/
li r0,__fixup_entries@sectoff@l
lwz r3,GOT(_FIXUP_TABLE_)
cmpwi r0,0
mtctr r0
addi r3,r3,-4
beq 4f
3: lwzu r4,4(r3)
lwzux r0,r4,r11
cmpwi r0,0
add r0,r0,r11
stw r4,0(r3)
beq- 5f
stw r0,0(r4)
5: bdnz 3b
4:
clear_bss:
/*
* Now clear BSS segment
*/
lwz r3,GOT(__bss_start)
lwz r4,GOT(__bss_end__)
cmplw 0,r3,r4
beq 6f
li r0,0
5:
stw r0,0(r3)
addi r3,r3,4
cmplw 0,r3,r4
bne 5b
6:
mr r3,r9 /* Init Data pointer */
mr r4,r10 /* Destination Address */
bl board_init_r
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#ifndef CONFIG_NAND_SPL
/*
* Copy exception vector code to low memory
*
* r3: dest_addr
* r7: source address, r8: end address, r9: target address
*/
.globl trap_init
trap_init:
mflr r4 /* save link register */
GET_GOT
lwz r7,GOT(_start_of_vectors)
lwz r8,GOT(_end_of_vectors)
li r9,0x100 /* reset vector always at 0x100 */
cmplw 0,r7,r8
bgelr /* return if r7>=r8 - just in case */
1:
lwz r0,0(r7)
stw r0,0(r9)
addi r7,r7,4
addi r9,r9,4
cmplw 0,r7,r8
bne 1b
/*
* relocate `hdlr' and `int_return' entries
*/
li r7,.L_CriticalInput - _start + _START_OFFSET
bl trap_reloc
li r7,.L_MachineCheck - _start + _START_OFFSET
bl trap_reloc
li r7,.L_DataStorage - _start + _START_OFFSET
bl trap_reloc
li r7,.L_InstStorage - _start + _START_OFFSET
bl trap_reloc
li r7,.L_ExtInterrupt - _start + _START_OFFSET
bl trap_reloc
li r7,.L_Alignment - _start + _START_OFFSET
bl trap_reloc
li r7,.L_ProgramCheck - _start + _START_OFFSET
bl trap_reloc
li r7,.L_FPUnavailable - _start + _START_OFFSET
bl trap_reloc
li r7,.L_Decrementer - _start + _START_OFFSET
bl trap_reloc
li r7,.L_IntervalTimer - _start + _START_OFFSET
li r8,_end_of_vectors - _start + _START_OFFSET
2:
bl trap_reloc
addi r7,r7,0x100 /* next exception vector */
cmplw 0,r7,r8
blt 2b
lis r7,0x0
mtspr IVPR,r7
mtlr r4 /* restore link register */
blr
.globl unlock_ram_in_cache
unlock_ram_in_cache:
/* invalidate the INIT_RAM section */
lis r3,(CONFIG_SYS_INIT_RAM_ADDR & ~(CONFIG_SYS_CACHELINE_SIZE-1))@h
ori r3,r3,(CONFIG_SYS_INIT_RAM_ADDR & ~(CONFIG_SYS_CACHELINE_SIZE-1))@l
mfspr r4,L1CFG0
andi. r4,r4,0x1ff
slwi r4,r4,(10 - 1 - L1_CACHE_SHIFT)
mtctr r4
1: dcbi r0,r3
addi r3,r3,CONFIG_SYS_CACHELINE_SIZE
bdnz 1b
sync
/* Invalidate the TLB entries for the cache */
lis r3,CONFIG_SYS_INIT_RAM_ADDR@h
ori r3,r3,CONFIG_SYS_INIT_RAM_ADDR@l
tlbivax 0,r3
addi r3,r3,0x1000
tlbivax 0,r3
addi r3,r3,0x1000
tlbivax 0,r3
addi r3,r3,0x1000
tlbivax 0,r3
isync
blr
.globl flush_dcache
flush_dcache:
mfspr r3,SPRN_L1CFG0
rlwinm r5,r3,9,3 /* Extract cache block size */
twlgti r5,1 /* Only 32 and 64 byte cache blocks
* are currently defined.
*/
li r4,32
subfic r6,r5,2 /* r6 = log2(1KiB / cache block size) -
* log2(number of ways)
*/
slw r5,r4,r5 /* r5 = cache block size */
rlwinm r7,r3,0,0xff /* Extract number of KiB in the cache */
mulli r7,r7,13 /* An 8-way cache will require 13
* loads per set.
*/
slw r7,r7,r6
/* save off HID0 and set DCFA */
mfspr r8,SPRN_HID0
ori r9,r8,HID0_DCFA@l
mtspr SPRN_HID0,r9
isync
lis r4,0
mtctr r7
1: lwz r3,0(r4) /* Load... */
add r4,r4,r5
bdnz 1b
msync
lis r4,0
mtctr r7
1: dcbf 0,r4 /* ...and flush. */
add r4,r4,r5
bdnz 1b
/* restore HID0 */
mtspr SPRN_HID0,r8
isync
blr
.globl setup_ivors
setup_ivors:
#include "fixed_ivor.S"
blr
ppc/85xx: add boot from NAND/eSDHC/eSPI support The MPC8536E is capable of booting form NAND/eSDHC/eSPI, this patch implements these three bootup methods in a unified way - all of these use the general cpu/mpc85xx/start.S, and load the main image to L2SRAM which lets us use the SPD to initialize the SDRAM. For all three bootup methods, the bootup process can be divided into two stages: the first stage will initialize the corresponding controller, configure the L2SRAM, then copy the second stage image to L2SRAM and jump to it. The second stage image is just like the general U-Boot image to configure all the hardware and boot up to U-Boot command line. When boot from NAND, the eLBC controller will first load the first stage image to internal 4K RAM buffer because it's also stored on the NAND flash. The first stage image, also call 4K NAND loader, will initialize the L2SRAM, load the second stage image to L2SRAM and jump to it. The 4K NAND loader's code comes from the corresponding nand_spl directory, along with the code twisted by CONFIG_NAND_SPL. When boot from eSDHC/eSPI, there's no such a first stage image because the CPU ROM code does the same work. It will initialize the L2SRAM according to the config addr/word pairs on the fixed address and initialize the eSDHC/eSPI controller, then load the second stage image to L2SRAM and jump to it. The macro CONFIG_SYS_RAMBOOT is used to control the code to produce the second stage image for all different bootup methods. It's set in the board config file when one of the bootup methods above is selected. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
16 years ago
#endif /* !CONFIG_NAND_SPL */