|
|
|
/*
|
|
|
|
* (C) Copyright 2006-2007 Freescale Semiconductor, Inc.
|
|
|
|
*
|
|
|
|
* (C) Copyright 2006
|
|
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
|
|
|
|
* (C) Copyright 2003 Motorola Inc.
|
|
|
|
* Xianghua Xiao (X.Xiao@motorola.com)
|
|
|
|
*
|
|
|
|
* See file CREDITS for list of people who contributed to this
|
|
|
|
* project.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of
|
|
|
|
* the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
* MA 02111-1307 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <i2c.h>
|
|
|
|
#include <spd.h>
|
|
|
|
#include <asm/mmu.h>
|
|
|
|
#include <spd_sdram.h>
|
|
|
|
|
|
|
|
void board_add_ram_info(int use_default)
|
|
|
|
{
|
|
|
|
volatile immap_t *immap = (immap_t *) CFG_IMMR;
|
|
|
|
volatile ddr83xx_t *ddr = &immap->ddr;
|
|
|
|
|
|
|
|
printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
|
|
|
|
>> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
|
|
|
|
|
|
|
|
if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
|
|
|
|
puts(", 32-bit");
|
|
|
|
else
|
|
|
|
puts(", 64-bit");
|
|
|
|
|
|
|
|
if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
|
|
|
|
puts(", ECC on)");
|
|
|
|
else
|
|
|
|
puts(", ECC off)");
|
|
|
|
|
|
|
|
#if defined(CFG_LB_SDRAM) && defined(CFG_LBC_SDRAM_SIZE)
|
|
|
|
puts("\nSDRAM: ");
|
|
|
|
print_size (CFG_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SPD_EEPROM
|
|
|
|
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
|
|
|
|
extern void dma_init(void);
|
|
|
|
extern uint dma_check(void);
|
|
|
|
extern int dma_xfer(void *dest, uint count, void *src);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef CFG_READ_SPD
|
|
|
|
#define CFG_READ_SPD i2c_read
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert picoseconds into clock cycles (rounding up if needed).
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
picos_to_clk(int picos)
|
|
|
|
{
|
|
|
|
unsigned int ddr_bus_clk;
|
|
|
|
int clks;
|
|
|
|
|
|
|
|
ddr_bus_clk = gd->ddr_clk >> 1;
|
|
|
|
clks = picos / (1000000000 / (ddr_bus_clk / 1000));
|
|
|
|
if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0)
|
|
|
|
clks++;
|
|
|
|
|
|
|
|
return clks;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int banksize(unsigned char row_dens)
|
|
|
|
{
|
|
|
|
return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
|
|
|
|
}
|
|
|
|
|
|
|
|
int read_spd(uint addr)
|
|
|
|
{
|
|
|
|
return ((int) addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef SPD_DEBUG
|
|
|
|
#ifdef SPD_DEBUG
|
|
|
|
static void spd_debug(spd_eeprom_t *spd)
|
|
|
|
{
|
|
|
|
printf ("\nDIMM type: %-18.18s\n", spd->mpart);
|
|
|
|
printf ("SPD size: %d\n", spd->info_size);
|
|
|
|
printf ("EEPROM size: %d\n", 1 << spd->chip_size);
|
|
|
|
printf ("Memory type: %d\n", spd->mem_type);
|
|
|
|
printf ("Row addr: %d\n", spd->nrow_addr);
|
|
|
|
printf ("Column addr: %d\n", spd->ncol_addr);
|
|
|
|
printf ("# of rows: %d\n", spd->nrows);
|
|
|
|
printf ("Row density: %d\n", spd->row_dens);
|
|
|
|
printf ("# of banks: %d\n", spd->nbanks);
|
|
|
|
printf ("Data width: %d\n",
|
|
|
|
256 * spd->dataw_msb + spd->dataw_lsb);
|
|
|
|
printf ("Chip width: %d\n", spd->primw);
|
|
|
|
printf ("Refresh rate: %02X\n", spd->refresh);
|
|
|
|
printf ("CAS latencies: %02X\n", spd->cas_lat);
|
|
|
|
printf ("Write latencies: %02X\n", spd->write_lat);
|
|
|
|
printf ("tRP: %d\n", spd->trp);
|
|
|
|
printf ("tRCD: %d\n", spd->trcd);
|
|
|
|
printf ("\n");
|
|
|
|
}
|
|
|
|
#endif /* SPD_DEBUG */
|
|
|
|
|
|
|
|
long int spd_sdram()
|
|
|
|
{
|
|
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
|
|
volatile ddr83xx_t *ddr = &immap->ddr;
|
|
|
|
volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
|
|
|
|
spd_eeprom_t spd;
|
|
|
|
unsigned int n_ranks;
|
|
|
|
unsigned int odt_rd_cfg, odt_wr_cfg;
|
|
|
|
unsigned char twr_clk, twtr_clk;
|
|
|
|
unsigned int sdram_type;
|
|
|
|
unsigned int memsize;
|
|
|
|
unsigned int law_size;
|
|
|
|
unsigned char caslat, caslat_ctrl;
|
|
|
|
unsigned int trfc, trfc_clk, trfc_low, trfc_high;
|
|
|
|
unsigned int trcd_clk, trtp_clk;
|
|
|
|
unsigned char cke_min_clk;
|
|
|
|
unsigned char add_lat, wr_lat;
|
|
|
|
unsigned char wr_data_delay;
|
|
|
|
unsigned char four_act;
|
|
|
|
unsigned char cpo;
|
|
|
|
unsigned char burstlen;
|
|
|
|
unsigned char odt_cfg, mode_odt_enable;
|
|
|
|
unsigned int max_bus_clk;
|
|
|
|
unsigned int max_data_rate, effective_data_rate;
|
|
|
|
unsigned int ddrc_clk;
|
|
|
|
unsigned int refresh_clk;
|
|
|
|
unsigned int sdram_cfg;
|
|
|
|
unsigned int ddrc_ecc_enable;
|
|
|
|
unsigned int pvr = get_pvr();
|
|
|
|
|
|
|
|
/* Read SPD parameters with I2C */
|
|
|
|
CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
|
|
|
|
#ifdef SPD_DEBUG
|
|
|
|
spd_debug(&spd);
|
|
|
|
#endif
|
|
|
|
/* Check the memory type */
|
|
|
|
if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
|
|
|
|
debug("DDR: Module mem type is %02X\n", spd.mem_type);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check the number of physical bank */
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
n_ranks = spd.nrows;
|
|
|
|
} else {
|
|
|
|
n_ranks = (spd.nrows & 0x7) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n_ranks > 2) {
|
|
|
|
printf("DDR: The number of physical bank is %02X\n", n_ranks);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if the number of row of the module is in the range of DDRC */
|
|
|
|
if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
|
|
|
|
printf("DDR: Row number is out of range of DDRC, row=%02X\n",
|
|
|
|
spd.nrow_addr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if the number of col of the module is in the range of DDRC */
|
|
|
|
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
|
|
|
|
printf("DDR: Col number is out of range of DDRC, col=%02X\n",
|
|
|
|
spd.ncol_addr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CFG_DDRCDR_VALUE
|
|
|
|
/*
|
|
|
|
* Adjust DDR II IO voltage biasing. It just makes it work.
|
|
|
|
*/
|
|
|
|
if(spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
|
|
immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE;
|
|
|
|
}
|
|
|
|
udelay(50000);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ODT configuration recommendation from DDR Controller Chapter.
|
|
|
|
*/
|
|
|
|
odt_rd_cfg = 0; /* Never assert ODT */
|
|
|
|
odt_wr_cfg = 0; /* Never assert ODT */
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
|
|
odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Setup DDR chip select register */
|
|
|
|
#ifdef CFG_83XX_DDR_USES_CS0
|
|
|
|
ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
|
|
|
|
ddr->cs_config[0] = ( 1 << 31
|
|
|
|
| (odt_rd_cfg << 20)
|
|
|
|
| (odt_wr_cfg << 16)
|
|
|
|
| (spd.nrow_addr - 12) << 8
|
|
|
|
| (spd.ncol_addr - 8) );
|
|
|
|
debug("\n");
|
|
|
|
debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
|
|
|
|
debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
|
|
|
|
|
|
|
|
if (n_ranks == 2) {
|
|
|
|
ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
|
|
|
|
| ((banksize(spd.row_dens) >> 23) - 1) );
|
|
|
|
ddr->cs_config[1] = ( 1<<31
|
|
|
|
| (odt_rd_cfg << 20)
|
|
|
|
| (odt_wr_cfg << 16)
|
|
|
|
| (spd.nrow_addr-12) << 8
|
|
|
|
| (spd.ncol_addr-8) );
|
|
|
|
debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
|
|
|
|
debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
|
|
|
|
ddr->cs_config[2] = ( 1 << 31
|
|
|
|
| (odt_rd_cfg << 20)
|
|
|
|
| (odt_wr_cfg << 16)
|
|
|
|
| (spd.nrow_addr - 12) << 8
|
|
|
|
| (spd.ncol_addr - 8) );
|
|
|
|
debug("\n");
|
|
|
|
debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
|
|
|
|
debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
|
|
|
|
|
|
|
|
if (n_ranks == 2) {
|
|
|
|
ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
|
|
|
|
| ((banksize(spd.row_dens) >> 23) - 1) );
|
|
|
|
ddr->cs_config[3] = ( 1<<31
|
|
|
|
| (odt_rd_cfg << 20)
|
|
|
|
| (odt_wr_cfg << 16)
|
|
|
|
| (spd.nrow_addr-12) << 8
|
|
|
|
| (spd.ncol_addr-8) );
|
|
|
|
debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
|
|
|
|
debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Figure out memory size in Megabytes.
|
|
|
|
*/
|
|
|
|
memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
|
|
|
|
*/
|
|
|
|
law_size = 19 + __ilog2(memsize);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up LAWBAR for all of DDR.
|
|
|
|
*/
|
|
|
|
ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
|
|
|
|
ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
|
|
|
|
debug("DDR:bar=0x%08x\n", ecm->bar);
|
|
|
|
debug("DDR:ar=0x%08x\n", ecm->ar);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find the largest CAS by locating the highest 1 bit
|
|
|
|
* in the spd.cas_lat field. Translate it to a DDR
|
|
|
|
* controller field value:
|
|
|
|
*
|
|
|
|
* CAS Lat DDR I DDR II Ctrl
|
|
|
|
* Clocks SPD Bit SPD Bit Value
|
|
|
|
* ------- ------- ------- -----
|
|
|
|
* 1.0 0 0001
|
|
|
|
* 1.5 1 0010
|
|
|
|
* 2.0 2 2 0011
|
|
|
|
* 2.5 3 0100
|
|
|
|
* 3.0 4 3 0101
|
|
|
|
* 3.5 5 0110
|
|
|
|
* 4.0 6 4 0111
|
|
|
|
* 4.5 1000
|
|
|
|
* 5.0 5 1001
|
|
|
|
*/
|
|
|
|
caslat = __ilog2(spd.cas_lat);
|
|
|
|
if ((spd.mem_type == SPD_MEMTYPE_DDR)
|
|
|
|
&& (caslat > 6)) {
|
|
|
|
printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
|
|
|
|
return 0;
|
|
|
|
} else if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
|
|
&& (caslat < 2 || caslat > 5)) {
|
|
|
|
printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
|
|
|
|
spd.cas_lat);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
debug("DDR: caslat SPD bit is %d\n", caslat);
|
|
|
|
|
|
|
|
max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
|
|
|
|
+ (spd.clk_cycle & 0x0f));
|
|
|
|
max_data_rate = max_bus_clk * 2;
|
|
|
|
|
|
|
|
debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);
|
|
|
|
|
|
|
|
ddrc_clk = gd->ddr_clk / 1000000;
|
|
|
|
effective_data_rate = 0;
|
|
|
|
|
|
|
|
if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
|
|
|
|
if (ddrc_clk <= 460 && ddrc_clk > 350) {
|
|
|
|
/* DDR controller clk at 350~460 */
|
|
|
|
effective_data_rate = 400; /* 5ns */
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
|
|
/* DDR controller clk at 280~350 */
|
|
|
|
effective_data_rate = 333; /* 6ns */
|
|
|
|
if (spd.clk_cycle2 == 0x60)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
else
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
|
|
/* DDR controller clk at 230~280 */
|
|
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
|
|
if (spd.clk_cycle3 == 0x75)
|
|
|
|
caslat = caslat - 2;
|
|
|
|
else if (spd.clk_cycle2 == 0x75)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
else
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
|
|
/* DDR controller clk at 90~230 */
|
|
|
|
effective_data_rate = 200; /* 10ns */
|
|
|
|
if (spd.clk_cycle3 == 0xa0)
|
|
|
|
caslat = caslat - 2;
|
|
|
|
else if (spd.clk_cycle2 == 0xa0)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
else
|
|
|
|
caslat = caslat;
|
|
|
|
}
|
|
|
|
} else if (max_data_rate >= 323) { /* it is DDR 333 */
|
|
|
|
if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
|
|
/* DDR controller clk at 280~350 */
|
|
|
|
effective_data_rate = 333; /* 6ns */
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
|
|
/* DDR controller clk at 230~280 */
|
|
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
|
|
if (spd.clk_cycle2 == 0x75)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
else
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
|
|
/* DDR controller clk at 90~230 */
|
|
|
|
effective_data_rate = 200; /* 10ns */
|
|
|
|
if (spd.clk_cycle3 == 0xa0)
|
|
|
|
caslat = caslat - 2;
|
|
|
|
else if (spd.clk_cycle2 == 0xa0)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
else
|
|
|
|
caslat = caslat;
|
|
|
|
}
|
|
|
|
} else if (max_data_rate >= 256) { /* it is DDR 266 */
|
|
|
|
if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
|
|
/* DDR controller clk at 280~350 */
|
|
|
|
printf("DDR: DDR controller freq is more than "
|
|
|
|
"max data rate of the module\n");
|
|
|
|
return 0;
|
|
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
|
|
/* DDR controller clk at 230~280 */
|
|
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
|
|
caslat = caslat;
|
|
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
|
|
/* DDR controller clk at 90~230 */
|
|
|
|
effective_data_rate = 200; /* 10ns */
|
|
|
|
if (spd.clk_cycle2 == 0xa0)
|
|
|
|
caslat = caslat - 1;
|
|
|
|
}
|
|
|
|
} else if (max_data_rate >= 190) { /* it is DDR 200 */
|
|
|
|
if (ddrc_clk <= 350 && ddrc_clk > 230) {
|
|
|
|
/* DDR controller clk at 230~350 */
|
|
|
|
printf("DDR: DDR controller freq is more than "
|
|
|
|
"max data rate of the module\n");
|
|
|
|
return 0;
|
|
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
|
|
/* DDR controller clk at 90~230 */
|
|
|
|
effective_data_rate = 200; /* 10ns */
|
|
|
|
caslat = caslat;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
|
|
|
|
debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Errata DDR6 work around: input enable 2 cycles earlier.
|
|
|
|
* including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
|
|
|
|
*/
|
|
|
|
if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
|
|
|
|
if (caslat == 2)
|
|
|
|
ddr->debug_reg = 0x201c0000; /* CL=2 */
|
|
|
|
else if (caslat == 3)
|
|
|
|
ddr->debug_reg = 0x202c0000; /* CL=2.5 */
|
|
|
|
else if (caslat == 4)
|
|
|
|
ddr->debug_reg = 0x202c0000; /* CL=3.0 */
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("sync");
|
|
|
|
|
|
|
|
debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert caslat clocks to DDR controller value.
|
|
|
|
* Force caslat_ctrl to be DDR Controller field-sized.
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
caslat_ctrl = (caslat + 1) & 0x07;
|
|
|
|
} else {
|
|
|
|
caslat_ctrl = (2 * caslat - 1) & 0x0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
|
|
|
|
debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
|
|
|
|
caslat, caslat_ctrl);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Timing Config 0.
|
|
|
|
* Avoid writing for DDR I.
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
|
|
unsigned char taxpd_clk = 8; /* By the book. */
|
|
|
|
unsigned char tmrd_clk = 2; /* By the book. */
|
|
|
|
unsigned char act_pd_exit = 2; /* Empirical? */
|
|
|
|
unsigned char pre_pd_exit = 6; /* Empirical? */
|
|
|
|
|
|
|
|
ddr->timing_cfg_0 = (0
|
|
|
|
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
|
|
|
|
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
|
|
|
|
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
|
|
|
|
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
|
|
|
|
);
|
|
|
|
debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
|
|
|
|
* use conservative value.
|
|
|
|
* For DDR II, they are bytes 36 and 37, in quarter nanos.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
twr_clk = 3; /* Clocks */
|
|
|
|
twtr_clk = 1; /* Clocks */
|
|
|
|
} else {
|
|
|
|
twr_clk = picos_to_clk(spd.twr * 250);
|
|
|
|
twtr_clk = picos_to_clk(spd.twtr * 250);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate Trfc, in picos.
|
|
|
|
* DDR I: Byte 42 straight up in ns.
|
|
|
|
* DDR II: Byte 40 and 42 swizzled some, in ns.
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
trfc = spd.trfc * 1000; /* up to ps */
|
|
|
|
} else {
|
|
|
|
unsigned int byte40_table_ps[8] = {
|
|
|
|
0,
|
|
|
|
250,
|
|
|
|
330,
|
|
|
|
500,
|
|
|
|
660,
|
|
|
|
750,
|
|
|
|
0,
|
|
|
|
0
|
|
|
|
};
|
|
|
|
|
|
|
|
trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
|
|
|
|
+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
|
|
|
|
}
|
|
|
|
trfc_clk = picos_to_clk(trfc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Trcd, Byte 29, from quarter nanos to ps and clocks.
|
|
|
|
*/
|
|
|
|
trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert trfc_clk to DDR controller fields. DDR I should
|
|
|
|
* fit in the REFREC field (16-19) of TIMING_CFG_1, but the
|
|
|
|
* 83xx controller has an extended REFREC field of three bits.
|
|
|
|
* The controller automatically adds 8 clocks to this value,
|
|
|
|
* so preadjust it down 8 first before splitting it up.
|
|
|
|
*/
|
|
|
|
trfc_low = (trfc_clk - 8) & 0xf;
|
|
|
|
trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
|
|
|
|
|
|
|
|
ddr->timing_cfg_1 =
|
|
|
|
(((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
|
|
|
|
((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
|
|
|
|
(trcd_clk << 20 ) | /* ACTTORW */
|
|
|
|
(caslat_ctrl << 16 ) | /* CASLAT */
|
|
|
|
(trfc_low << 12 ) | /* REFEC */
|
|
|
|
((twr_clk & 0x07) << 8) | /* WRRREC */
|
|
|
|
((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
|
|
|
|
((twtr_clk & 0x07) << 0) /* WRTORD */
|
|
|
|
);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Additive Latency
|
|
|
|
* For DDR I, 0.
|
|
|
|
* For DDR II, with ODT enabled, use "a value" less than ACTTORW,
|
|
|
|
* which comes from Trcd, and also note that:
|
|
|
|
* add_lat + caslat must be >= 4
|
|
|
|
*/
|
|
|
|
add_lat = 0;
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
|
|
&& (odt_wr_cfg || odt_rd_cfg)
|
|
|
|
&& (caslat < 4)) {
|
|
|
|
add_lat = trcd_clk - 1;
|
|
|
|
if ((add_lat + caslat) < 4) {
|
|
|
|
add_lat = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write Data Delay
|
|
|
|
* Historically 0x2 == 4/8 clock delay.
|
|
|
|
* Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
|
|
|
|
*/
|
|
|
|
wr_data_delay = 2;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write Latency
|
|
|
|
* Read to Precharge
|
|
|
|
* Minimum CKE Pulse Width.
|
|
|
|
* Four Activate Window
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
/*
|
|
|
|
* This is a lie. It should really be 1, but if it is
|
|
|
|
* set to 1, bits overlap into the old controller's
|
|
|
|
* otherwise unused ACSM field. If we leave it 0, then
|
|
|
|
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
|
|
|
|
*/
|
|
|
|
wr_lat = 0;
|
|
|
|
|
|
|
|
trtp_clk = 2; /* By the book. */
|
|
|
|
cke_min_clk = 1; /* By the book. */
|
|
|
|
four_act = 1; /* By the book. */
|
|
|
|
|
|
|
|
} else {
|
|
|
|
wr_lat = caslat - 1;
|
|
|
|
|
|
|
|
/* Convert SPD value from quarter nanos to picos. */
|
|
|
|
trtp_clk = picos_to_clk(spd.trtp * 250);
|
|
|
|
|
|
|
|
cke_min_clk = 3; /* By the book. */
|
|
|
|
four_act = picos_to_clk(37500); /* By the book. 1k pages? */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Empirically set ~MCAS-to-preamble override for DDR 2.
|
|
|
|
* Your milage will vary.
|
|
|
|
*/
|
|
|
|
cpo = 0;
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
|
|
if (effective_data_rate == 266 || effective_data_rate == 333) {
|
|
|
|
cpo = 0x7; /* READ_LAT + 5/4 */
|
|
|
|
} else if (effective_data_rate == 400) {
|
|
|
|
cpo = 0x7; /* READ_LAT + 5/4 */
|
|
|
|
} else {
|
|
|
|
/* Automatic calibration */
|
|
|
|
cpo = 0x1f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ddr->timing_cfg_2 = (0
|
|
|
|
| ((add_lat & 0x7) << 28) /* ADD_LAT */
|
|
|
|
| ((cpo & 0x1f) << 23) /* CPO */
|
|
|
|
| ((wr_lat & 0x7) << 19) /* WR_LAT */
|
|
|
|
| ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
|
|
|
|
| ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
|
|
|
|
| ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
|
|
|
|
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
|
|
|
|
);
|
|
|
|
|
|
|
|
debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
|
|
|
|
debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
|
|
|
|
|
|
|
|
/* Check DIMM data bus width */
|
|
|
|
if (spd.dataw_lsb == 0x20) {
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
|
|
burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
|
|
|
|
else
|
|
|
|
burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
|
|
|
|
debug("\n DDR DIMM: data bus width is 32 bit");
|
|
|
|
} else {
|
|
|
|
burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
|
|
|
|
debug("\n DDR DIMM: data bus width is 64 bit");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Is this an ECC DDR chip? */
|
|
|
|
if (spd.config == 0x02)
|
|
|
|
debug(" with ECC\n");
|
|
|
|
else
|
|
|
|
debug(" without ECC\n");
|
|
|
|
|
|
|
|
/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
|
|
|
|
Burst type is sequential
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
|
|
switch (caslat) {
|
|
|
|
case 1:
|
|
|
|
ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
mode_odt_enable = 0x0; /* Default disabled */
|
|
|
|
if (odt_wr_cfg || odt_rd_cfg) {
|
|
|
|
/*
|
|
|
|
* Bits 6 and 2 in Extended MRS(1)
|
|
|
|
* Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
|
|
|
|
* Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
|
|
|
|
*/
|
|
|
|
mode_odt_enable = 0x40; /* 150 Ohm */
|
|
|
|
}
|
|
|
|
|
|
|
|
ddr->sdram_mode =
|
|
|
|
(0
|
|
|
|
| (1 << (16 + 10)) /* DQS Differential disable */
|
|
|
|
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
|
|
|
|
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
|
|
|
|
| ((twr_clk - 1) << 9) /* Write Recovery Autopre */
|
|
|
|
| (caslat << 4) /* caslat */
|
|
|
|
| (burstlen << 0) /* Burst length */
|
|
|
|
);
|
|
|
|
}
|
|
|
|
debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear EMRS2 and EMRS3.
|
|
|
|
*/
|
|
|
|
ddr->sdram_mode2 = 0;
|
|
|
|
debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
|
|
|
|
|
|
|
|
switch (spd.refresh) {
|
|
|
|
case 0x00:
|
|
|
|
case 0x80:
|
|
|
|
refresh_clk = picos_to_clk(15625000);
|
|
|
|
break;
|
|
|
|
case 0x01:
|
|
|
|
case 0x81:
|
|
|
|
refresh_clk = picos_to_clk(3900000);
|
|
|
|
break;
|
|
|
|
case 0x02:
|
|
|
|
case 0x82:
|
|
|
|
refresh_clk = picos_to_clk(7800000);
|
|
|
|
break;
|
|
|
|
case 0x03:
|
|
|
|
case 0x83:
|
|
|
|
refresh_clk = picos_to_clk(31300000);
|
|
|
|
break;
|
|
|
|
case 0x04:
|
|
|
|
case 0x84:
|
|
|
|
refresh_clk = picos_to_clk(62500000);
|
|
|
|
break;
|
|
|
|
case 0x05:
|
|
|
|
case 0x85:
|
|
|
|
refresh_clk = picos_to_clk(125000000);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
refresh_clk = 0x512;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set BSTOPRE to 0x100 for page mode
|
|
|
|
* If auto-charge is used, set BSTOPRE = 0
|
|
|
|
*/
|
|
|
|
ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
|
|
|
|
debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SDRAM Cfg 2
|
|
|
|
*/
|
|
|
|
odt_cfg = 0;
|
|
|
|
#ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU
|
|
|
|
if (odt_rd_cfg | odt_wr_cfg) {
|
|
|
|
odt_cfg = 0x2; /* ODT to IOs during reads */
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
|
|
ddr->sdram_cfg2 = (0
|
|
|
|
| (0 << 26) /* True DQS */
|
|
|
|
| (odt_cfg << 21) /* ODT only read */
|
|
|
|
| (1 << 12) /* 1 refresh at a time */
|
|
|
|
);
|
|
|
|
|
|
|
|
debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CFG_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
|
|
|
|
ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL;
|
|
|
|
#endif
|
|
|
|
debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
|
|
|
|
|
|
|
|
asm("sync;isync");
|
|
|
|
|
|
|
|
udelay(600);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Figure out the settings for the sdram_cfg register. Build up
|
|
|
|
* the value in 'sdram_cfg' before writing since the write into
|
|
|
|
* the register will actually enable the memory controller, and all
|
|
|
|
* settings must be done before enabling.
|
|
|
|
*
|
|
|
|
* sdram_cfg[0] = 1 (ddr sdram logic enable)
|
|
|
|
* sdram_cfg[1] = 1 (self-refresh-enable)
|
|
|
|
* sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
|
|
|
|
* 010 DDR 1 SDRAM
|
|
|
|
* 011 DDR 2 SDRAM
|
|
|
|
* sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
|
|
|
|
* sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
|
|
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
|
|
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
|
|
|
|
else
|
|
|
|
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2;
|
|
|
|
|
|
|
|
sdram_cfg = (0
|
|
|
|
| SDRAM_CFG_MEM_EN /* DDR enable */
|
|
|
|
| SDRAM_CFG_SREN /* Self refresh */
|
|
|
|
| sdram_type /* SDRAM type */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* sdram_cfg[3] = RD_EN - registered DIMM enable */
|
|
|
|
if (spd.mod_attr & 0x02)
|
|
|
|
sdram_cfg |= SDRAM_CFG_RD_EN;
|
|
|
|
|
|
|
|
/* The DIMM is 32bit width */
|
|
|
|
if (spd.dataw_lsb == 0x20) {
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
|
|
sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2)
|
|
|
|
sdram_cfg |= SDRAM_CFG_32_BE;
|
|
|
|
}
|
|
|
|
|
|
|
|
ddrc_ecc_enable = 0;
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC)
|
|
|
|
/* Enable ECC with sdram_cfg[2] */
|
|
|
|
if (spd.config == 0x02) {
|
|
|
|
sdram_cfg |= 0x20000000;
|
|
|
|
ddrc_ecc_enable = 1;
|
|
|
|
/* disable error detection */
|
|
|
|
ddr->err_disable = ~ECC_ERROR_ENABLE;
|
|
|
|
/* set single bit error threshold to maximum value,
|
|
|
|
* reset counter to zero */
|
|
|
|
ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
|
|
|
|
(0 << ECC_ERROR_MAN_SBEC_SHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
|
|
|
|
debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
|
|
|
|
#endif
|
|
|
|
debug(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_2T_TIMING)
|
|
|
|
/*
|
|
|
|
* Enable 2T timing by setting sdram_cfg[16].
|
|
|
|
*/
|
|
|
|
sdram_cfg |= SDRAM_CFG_2T_EN;
|
|
|
|
#endif
|
|
|
|
/* Enable controller, and GO! */
|
|
|
|
ddr->sdram_cfg = sdram_cfg;
|
|
|
|
asm("sync;isync");
|
|
|
|
udelay(500);
|
|
|
|
|
|
|
|
debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
|
|
|
|
return memsize; /*in MBytes*/
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SPD_EEPROM */
|
|
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
|
|
|
|
/*
|
|
|
|
* Use timebase counter, get_timer() is not availabe
|
|
|
|
* at this point of initialization yet.
|
|
|
|
*/
|
|
|
|
static __inline__ unsigned long get_tbms (void)
|
|
|
|
{
|
|
|
|
unsigned long tbl;
|
|
|
|
unsigned long tbu1, tbu2;
|
|
|
|
unsigned long ms;
|
|
|
|
unsigned long long tmp;
|
|
|
|
|
|
|
|
ulong tbclk = get_tbclk();
|
|
|
|
|
|
|
|
/* get the timebase ticks */
|
|
|
|
do {
|
|
|
|
asm volatile ("mftbu %0":"=r" (tbu1):);
|
|
|
|
asm volatile ("mftb %0":"=r" (tbl):);
|
|
|
|
asm volatile ("mftbu %0":"=r" (tbu2):);
|
|
|
|
} while (tbu1 != tbu2);
|
|
|
|
|
|
|
|
/* convert ticks to ms */
|
|
|
|
tmp = (unsigned long long)(tbu1);
|
|
|
|
tmp = (tmp << 32);
|
|
|
|
tmp += (unsigned long long)(tbl);
|
|
|
|
ms = tmp/(tbclk/1000);
|
|
|
|
|
|
|
|
return ms;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize all of memory for ECC, then enable errors.
|
|
|
|
*/
|
|
|
|
/* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
|
|
|
|
void ddr_enable_ecc(unsigned int dram_size)
|
|
|
|
{
|
|
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
|
|
volatile ddr83xx_t *ddr= &immap->ddr;
|
|
|
|
unsigned long t_start, t_end;
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
register u64 *p;
|
|
|
|
register uint size;
|
|
|
|
unsigned int pattern[2];
|
|
|
|
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
|
|
|
|
uint i;
|
|
|
|
#endif
|
|
|
|
icache_enable();
|
|
|
|
t_start = get_tbms();
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
pattern[0] = 0xdeadbeef;
|
|
|
|
pattern[1] = 0xdeadbeef;
|
|
|
|
|
|
|
|
#if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
debug("ddr init: CPU FP write method\n");
|
|
|
|
size = dram_size;
|
|
|
|
for (p = 0; p < (u64*)(size); p++) {
|
|
|
|
ppcDWstore((u32*)p, pattern);
|
|
|
|
}
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
__asm__ __volatile__ ("sync");
|
|
|
|
#else
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
debug("ddr init: DMA method\n");
|
|
|
|
size = 0x2000;
|
|
|
|
for (p = 0; p < (u64*)(size); p++) {
|
|
|
|
ppcDWstore((u32*)p, pattern);
|
|
|
|
}
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
__asm__ __volatile__ ("sync");
|
|
|
|
|
mpc83xx: Fix the incorrect dcbz operation
The 834x rev1.x silicon has one CPU5 errata.
The issue is when the data cache locked with
HID0[DLOCK], the dcbz instruction looks like no-op inst.
The right behavior of the data cache is when the data cache
Locked with HID0[DLOCK], the dcbz instruction allocates
new tags in cache.
The 834x rev3.0 and later and 8360 have not this bug inside.
So, when 834x rev3.0/8360 are working with ECC, the dcbz
instruction will corrupt the stack in cache, the processor will
checkstop reset.
However, the 834x rev1.x can work with ECC with these code,
because the sillicon has this cache bug. The dcbz will not
corrupt the stack in cache.
Really, it is the fault code running on fault sillicon.
This patch fix the incorrect dcbz operation. Instead of
CPU FP writing to initialise the ECC.
CHANGELOG:
* Fix the incorrect dcbz operation instead of CPU FP
writing to initialise the ECC memory. Otherwise, it
will corrupt the stack in cache, The processor will checkstop
reset.
Signed-off-by: Dave Liu <daveliu@freescale.com>
18 years ago
|
|
|
/* Initialise DMA for direct transfer */
|
|
|
|
dma_init();
|
|
|
|
/* Start DMA to transfer */
|
|
|
|
dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
|
|
|
|
dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
|
|
|
|
dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
|
|
|
|
dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
|
|
|
|
dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
|
|
|
|
dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
|
|
|
|
dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
|
|
|
|
dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
|
|
|
|
dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
|
|
|
|
dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
|
|
|
|
|
|
|
|
for (i = 1; i < dram_size / 0x800000; i++) {
|
|
|
|
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
t_end = get_tbms();
|
|
|
|
icache_disable();
|
|
|
|
|
|
|
|
debug("\nREADY!!\n");
|
|
|
|
debug("ddr init duration: %ld ms\n", t_end - t_start);
|
|
|
|
|
|
|
|
/* Clear All ECC Errors */
|
|
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
|
|
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MME;
|
|
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
|
|
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MBE;
|
|
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
|
|
|
|
ddr->err_detect |= ECC_ERROR_DETECT_SBE;
|
|
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
|
|
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MSE;
|
|
|
|
|
|
|
|
/* Disable ECC-Interrupts */
|
|
|
|
ddr->err_int_en &= ECC_ERR_INT_DISABLE;
|
|
|
|
|
|
|
|
/* Enable errors for ECC */
|
|
|
|
ddr->err_disable &= ECC_ERROR_ENABLE;
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("sync");
|
|
|
|
__asm__ __volatile__ ("isync");
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_DDR_ECC */
|