|
|
|
#
|
|
|
|
# (C) Copyright 2000 - 2008
|
|
|
|
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
|
|
#
|
|
|
|
# See file CREDITS for list of people who contributed to this
|
|
|
|
# project.
|
|
|
|
#
|
|
|
|
# This program is free software; you can redistribute it and/or
|
|
|
|
# modify it under the terms of the GNU General Public License as
|
|
|
|
# published by the Free Software Foundation; either version 2 of
|
|
|
|
# the License, or (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program; if not, write to the Free Software
|
|
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
|
|
# MA 02111-1307 USA
|
|
|
|
#
|
|
|
|
|
|
|
|
Summary:
|
|
|
|
========
|
|
|
|
|
|
|
|
This directory contains the source code for U-Boot, a boot loader for
|
|
|
|
Embedded boards based on PowerPC, ARM, MIPS and several other
|
|
|
|
processors, which can be installed in a boot ROM and used to
|
|
|
|
initialize and test the hardware or to download and run application
|
|
|
|
code.
|
|
|
|
|
|
|
|
The development of U-Boot is closely related to Linux: some parts of
|
|
|
|
the source code originate in the Linux source tree, we have some
|
|
|
|
header files in common, and special provision has been made to
|
|
|
|
support booting of Linux images.
|
|
|
|
|
|
|
|
Some attention has been paid to make this software easily
|
|
|
|
configurable and extendable. For instance, all monitor commands are
|
|
|
|
implemented with the same call interface, so that it's very easy to
|
|
|
|
add new commands. Also, instead of permanently adding rarely used
|
|
|
|
code (for instance hardware test utilities) to the monitor, you can
|
|
|
|
load and run it dynamically.
|
|
|
|
|
|
|
|
|
|
|
|
Status:
|
|
|
|
=======
|
|
|
|
|
|
|
|
In general, all boards for which a configuration option exists in the
|
|
|
|
Makefile have been tested to some extent and can be considered
|
|
|
|
"working". In fact, many of them are used in production systems.
|
|
|
|
|
|
|
|
In case of problems see the CHANGELOG and CREDITS files to find out
|
|
|
|
who contributed the specific port. The MAINTAINERS file lists board
|
|
|
|
maintainers.
|
|
|
|
|
|
|
|
|
|
|
|
Where to get help:
|
|
|
|
==================
|
|
|
|
|
|
|
|
In case you have questions about, problems with or contributions for
|
|
|
|
U-Boot you should send a message to the U-Boot mailing list at
|
|
|
|
<u-boot-users@lists.sourceforge.net>. There is also an archive of
|
|
|
|
previous traffic on the mailing list - please search the archive
|
|
|
|
before asking FAQ's. Please see
|
|
|
|
http://lists.sourceforge.net/lists/listinfo/u-boot-users/
|
|
|
|
|
|
|
|
|
|
|
|
Where to get source code:
|
|
|
|
=========================
|
|
|
|
|
|
|
|
The U-Boot source code is maintained in the git repository at
|
|
|
|
git://www.denx.de/git/u-boot.git ; you can browse it online at
|
|
|
|
http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
|
|
|
|
|
|
|
|
The "snapshot" links on this page allow you to download tarballs of
|
|
|
|
any version you might be interested in. Ofifcial releases are also
|
|
|
|
available for FTP download from the ftp://ftp.denx.de/pub/u-boot/
|
|
|
|
directory.
|
|
|
|
|
|
|
|
Pre-built (and tested) images are available from
|
|
|
|
ftp://ftp.denx.de/pub/u-boot/images/
|
|
|
|
|
|
|
|
|
|
|
|
Where we come from:
|
|
|
|
===================
|
|
|
|
|
|
|
|
- start from 8xxrom sources
|
|
|
|
- create PPCBoot project (http://sourceforge.net/projects/ppcboot)
|
|
|
|
- clean up code
|
|
|
|
- make it easier to add custom boards
|
|
|
|
- make it possible to add other [PowerPC] CPUs
|
|
|
|
- extend functions, especially:
|
|
|
|
* Provide extended interface to Linux boot loader
|
|
|
|
* S-Record download
|
|
|
|
* network boot
|
|
|
|
* PCMCIA / CompactFLash / ATA disk / SCSI ... boot
|
|
|
|
- create ARMBoot project (http://sourceforge.net/projects/armboot)
|
|
|
|
- add other CPU families (starting with ARM)
|
|
|
|
- create U-Boot project (http://sourceforge.net/projects/u-boot)
|
|
|
|
- current project page: see http://www.denx.de/wiki/UBoot
|
|
|
|
|
|
|
|
|
|
|
|
Names and Spelling:
|
|
|
|
===================
|
|
|
|
|
|
|
|
The "official" name of this project is "Das U-Boot". The spelling
|
|
|
|
"U-Boot" shall be used in all written text (documentation, comments
|
|
|
|
in source files etc.). Example:
|
|
|
|
|
|
|
|
This is the README file for the U-Boot project.
|
|
|
|
|
|
|
|
File names etc. shall be based on the string "u-boot". Examples:
|
|
|
|
|
|
|
|
include/asm-ppc/u-boot.h
|
|
|
|
|
|
|
|
#include <asm/u-boot.h>
|
|
|
|
|
|
|
|
Variable names, preprocessor constants etc. shall be either based on
|
|
|
|
the string "u_boot" or on "U_BOOT". Example:
|
|
|
|
|
|
|
|
U_BOOT_VERSION u_boot_logo
|
|
|
|
IH_OS_U_BOOT u_boot_hush_start
|
|
|
|
|
|
|
|
|
|
|
|
Versioning:
|
|
|
|
===========
|
|
|
|
|
|
|
|
U-Boot uses a 3 level version number containing a version, a
|
|
|
|
sub-version, and a patchlevel: "U-Boot-2.34.5" means version "2",
|
|
|
|
sub-version "34", and patchlevel "4".
|
|
|
|
|
|
|
|
The patchlevel is used to indicate certain stages of development
|
|
|
|
between released versions, i. e. officially released versions of
|
|
|
|
U-Boot will always have a patchlevel of "0".
|
|
|
|
|
|
|
|
|
|
|
|
Directory Hierarchy:
|
|
|
|
====================
|
|
|
|
|
|
|
|
- board Board dependent files
|
|
|
|
- common Misc architecture independent functions
|
|
|
|
- cpu CPU specific files
|
|
|
|
- 74xx_7xx Files specific to Freescale MPC74xx and 7xx CPUs
|
|
|
|
- arm720t Files specific to ARM 720 CPUs
|
|
|
|
- arm920t Files specific to ARM 920 CPUs
|
|
|
|
- at91rm9200 Files specific to Atmel AT91RM9200 CPU
|
|
|
|
- imx Files specific to Freescale MC9328 i.MX CPUs
|
|
|
|
- s3c24x0 Files specific to Samsung S3C24X0 CPUs
|
|
|
|
- arm925t Files specific to ARM 925 CPUs
|
|
|
|
- arm926ejs Files specific to ARM 926 CPUs
|
|
|
|
- arm1136 Files specific to ARM 1136 CPUs
|
|
|
|
- at32ap Files specific to Atmel AVR32 AP CPUs
|
|
|
|
- i386 Files specific to i386 CPUs
|
|
|
|
- ixp Files specific to Intel XScale IXP CPUs
|
|
|
|
- leon2 Files specific to Gaisler LEON2 SPARC CPU
|
|
|
|
- leon3 Files specific to Gaisler LEON3 SPARC CPU
|
|
|
|
- mcf52x2 Files specific to Freescale ColdFire MCF52x2 CPUs
|
|
|
|
- mcf5227x Files specific to Freescale ColdFire MCF5227x CPUs
|
Added M5329AFEE and M5329BFEE Platforms
Added board/freescale/m5329evb, cpu/mcf532x, drivers/net,
drivers/serial, immap_5329.h, m5329.h, mcfrtc.h,
include/configs/M5329EVB.h, lib_m68k/interrupts.c, and
rtc/mcfrtc.c
Modified CREDITS, MAKEFILE, Makefile, README, common/cmd_bdinfo.c,
common/cmd_mii.c, include/asm-m68k/byteorder.h, include/asm-m68k/fec.h,
include/asm-m68k/io.h, include/asm-m68k/mcftimer.h,
include/asm-m68k/mcfuart.h, include/asm-m68k/ptrace.h,
include/asm-m68k/u-boot.h, lib_m68k/Makefile, lib_m68k/board.c,
lib_m68k/time.c, net/eth.c and rtc/Makefile
Signed-off-by: TsiChung Liew <Tsi-Chung.Liew@freescale.com>
18 years ago
|
|
|
- mcf532x Files specific to Freescale ColdFire MCF5329 CPUs
|
|
|
|
- mcf5445x Files specific to Freescale ColdFire MCF5445x CPUs
|
|
|
|
- mcf547x_8x Files specific to Freescale ColdFire MCF547x_8x CPUs
|
|
|
|
- mips Files specific to MIPS CPUs
|
|
|
|
- mpc5xx Files specific to Freescale MPC5xx CPUs
|
|
|
|
- mpc5xxx Files specific to Freescale MPC5xxx CPUs
|
|
|
|
- mpc8xx Files specific to Freescale MPC8xx CPUs
|
|
|
|
- mpc8220 Files specific to Freescale MPC8220 CPUs
|
|
|
|
- mpc824x Files specific to Freescale MPC824x CPUs
|
|
|
|
- mpc8260 Files specific to Freescale MPC8260 CPUs
|
|
|
|
- mpc85xx Files specific to Freescale MPC85xx CPUs
|
|
|
|
- nios Files specific to Altera NIOS CPUs
|
|
|
|
- nios2 Files specific to Altera Nios-II CPUs
|
|
|
|
- ppc4xx Files specific to AMCC PowerPC 4xx CPUs
|
|
|
|
- pxa Files specific to Intel XScale PXA CPUs
|
|
|
|
- s3c44b0 Files specific to Samsung S3C44B0 CPUs
|
|
|
|
- sa1100 Files specific to Intel StrongARM SA1100 CPUs
|
|
|
|
- disk Code for disk drive partition handling
|
|
|
|
- doc Documentation (don't expect too much)
|
|
|
|
- drivers Commonly used device drivers
|
|
|
|
- dtt Digital Thermometer and Thermostat drivers
|
|
|
|
- examples Example code for standalone applications, etc.
|
|
|
|
- include Header Files
|
|
|
|
- lib_arm Files generic to ARM architecture
|
|
|
|
- lib_avr32 Files generic to AVR32 architecture
|
|
|
|
- lib_generic Files generic to all architectures
|
|
|
|
- lib_i386 Files generic to i386 architecture
|
|
|
|
- lib_m68k Files generic to m68k architecture
|
|
|
|
- lib_mips Files generic to MIPS architecture
|
|
|
|
- lib_nios Files generic to NIOS architecture
|
|
|
|
- lib_ppc Files generic to PowerPC architecture
|
|
|
|
- lib_sparc Files generic to SPARC architecture
|
|
|
|
- libfdt Library files to support flattened device trees
|
|
|
|
- net Networking code
|
|
|
|
- post Power On Self Test
|
|
|
|
- rtc Real Time Clock drivers
|
|
|
|
- tools Tools to build S-Record or U-Boot images, etc.
|
|
|
|
|
|
|
|
Software Configuration:
|
|
|
|
=======================
|
|
|
|
|
|
|
|
Configuration is usually done using C preprocessor defines; the
|
|
|
|
rationale behind that is to avoid dead code whenever possible.
|
|
|
|
|
|
|
|
There are two classes of configuration variables:
|
|
|
|
|
|
|
|
* Configuration _OPTIONS_:
|
|
|
|
These are selectable by the user and have names beginning with
|
|
|
|
"CONFIG_".
|
|
|
|
|
|
|
|
* Configuration _SETTINGS_:
|
|
|
|
These depend on the hardware etc. and should not be meddled with if
|
|
|
|
you don't know what you're doing; they have names beginning with
|
|
|
|
"CFG_".
|
|
|
|
|
|
|
|
Later we will add a configuration tool - probably similar to or even
|
|
|
|
identical to what's used for the Linux kernel. Right now, we have to
|
|
|
|
do the configuration by hand, which means creating some symbolic
|
|
|
|
links and editing some configuration files. We use the TQM8xxL boards
|
|
|
|
as an example here.
|
|
|
|
|
|
|
|
|
|
|
|
Selection of Processor Architecture and Board Type:
|
|
|
|
---------------------------------------------------
|
|
|
|
|
|
|
|
For all supported boards there are ready-to-use default
|
|
|
|
configurations available; just type "make <board_name>_config".
|
|
|
|
|
|
|
|
Example: For a TQM823L module type:
|
|
|
|
|
|
|
|
cd u-boot
|
|
|
|
make TQM823L_config
|
|
|
|
|
|
|
|
For the Cogent platform, you need to specify the cpu type as well;
|
|
|
|
e.g. "make cogent_mpc8xx_config". And also configure the cogent
|
|
|
|
directory according to the instructions in cogent/README.
|
|
|
|
|
|
|
|
|
|
|
|
Configuration Options:
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
Configuration depends on the combination of board and CPU type; all
|
|
|
|
such information is kept in a configuration file
|
|
|
|
"include/configs/<board_name>.h".
|
|
|
|
|
|
|
|
Example: For a TQM823L module, all configuration settings are in
|
|
|
|
"include/configs/TQM823L.h".
|
|
|
|
|
|
|
|
|
|
|
|
Many of the options are named exactly as the corresponding Linux
|
|
|
|
kernel configuration options. The intention is to make it easier to
|
|
|
|
build a config tool - later.
|
|
|
|
|
|
|
|
|
|
|
|
The following options need to be configured:
|
|
|
|
|
|
|
|
- CPU Type: Define exactly one, e.g. CONFIG_MPC85XX.
|
|
|
|
|
|
|
|
- Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS.
|
|
|
|
|
|
|
|
- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
|
|
|
|
Define exactly one, e.g. CONFIG_ATSTK1002
|
|
|
|
|
|
|
|
- CPU Module Type: (if CONFIG_COGENT is defined)
|
|
|
|
Define exactly one of
|
|
|
|
CONFIG_CMA286_60_OLD
|
|
|
|
--- FIXME --- not tested yet:
|
|
|
|
CONFIG_CMA286_60, CONFIG_CMA286_21, CONFIG_CMA286_60P,
|
|
|
|
CONFIG_CMA287_23, CONFIG_CMA287_50
|
|
|
|
|
|
|
|
- Motherboard Type: (if CONFIG_COGENT is defined)
|
|
|
|
Define exactly one of
|
|
|
|
CONFIG_CMA101, CONFIG_CMA102
|
|
|
|
|
|
|
|
- Motherboard I/O Modules: (if CONFIG_COGENT is defined)
|
|
|
|
Define one or more of
|
|
|
|
CONFIG_CMA302
|
|
|
|
|
|
|
|
- Motherboard Options: (if CONFIG_CMA101 or CONFIG_CMA102 are defined)
|
|
|
|
Define one or more of
|
|
|
|
CONFIG_LCD_HEARTBEAT - update a character position on
|
|
|
|
the lcd display every second with
|
|
|
|
a "rotator" |\-/|\-/
|
|
|
|
|
|
|
|
- Board flavour: (if CONFIG_MPC8260ADS is defined)
|
|
|
|
CONFIG_ADSTYPE
|
|
|
|
Possible values are:
|
|
|
|
CFG_8260ADS - original MPC8260ADS
|
|
|
|
CFG_8266ADS - MPC8266ADS
|
|
|
|
CFG_PQ2FADS - PQ2FADS-ZU or PQ2FADS-VR
|
|
|
|
CFG_8272ADS - MPC8272ADS
|
|
|
|
|
|
|
|
- MPC824X Family Member (if CONFIG_MPC824X is defined)
|
|
|
|
Define exactly one of
|
|
|
|
CONFIG_MPC8240, CONFIG_MPC8245
|
|
|
|
|
|
|
|
- 8xx CPU Options: (if using an MPC8xx cpu)
|
|
|
|
CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if
|
|
|
|
get_gclk_freq() cannot work
|
|
|
|
e.g. if there is no 32KHz
|
|
|
|
reference PIT/RTC clock
|
|
|
|
CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK
|
|
|
|
or XTAL/EXTAL)
|
|
|
|
|
|
|
|
- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
|
|
|
|
CFG_8xx_CPUCLK_MIN
|
|
|
|
CFG_8xx_CPUCLK_MAX
|
|
|
|
CONFIG_8xx_CPUCLK_DEFAULT
|
|
|
|
See doc/README.MPC866
|
|
|
|
|
|
|
|
CFG_MEASURE_CPUCLK
|
|
|
|
|
|
|
|
Define this to measure the actual CPU clock instead
|
|
|
|
of relying on the correctness of the configured
|
|
|
|
values. Mostly useful for board bringup to make sure
|
|
|
|
the PLL is locked at the intended frequency. Note
|
|
|
|
that this requires a (stable) reference clock (32 kHz
|
|
|
|
RTC clock or CFG_8XX_XIN)
|
|
|
|
|
|
|
|
- Intel Monahans options:
|
|
|
|
CFG_MONAHANS_RUN_MODE_OSC_RATIO
|
|
|
|
|
|
|
|
Defines the Monahans run mode to oscillator
|
|
|
|
ratio. Valid values are 8, 16, 24, 31. The core
|
|
|
|
frequency is this value multiplied by 13 MHz.
|
|
|
|
|
|
|
|
CFG_MONAHANS_TURBO_RUN_MODE_RATIO
|
|
|
|
|
|
|
|
Defines the Monahans turbo mode to oscillator
|
|
|
|
ratio. Valid values are 1 (default if undefined) and
|
|
|
|
2. The core frequency as calculated above is multiplied
|
|
|
|
by this value.
|
|
|
|
|
|
|
|
- Linux Kernel Interface:
|
|
|
|
CONFIG_CLOCKS_IN_MHZ
|
|
|
|
|
|
|
|
U-Boot stores all clock information in Hz
|
|
|
|
internally. For binary compatibility with older Linux
|
|
|
|
kernels (which expect the clocks passed in the
|
|
|
|
bd_info data to be in MHz) the environment variable
|
|
|
|
"clocks_in_mhz" can be defined so that U-Boot
|
|
|
|
converts clock data to MHZ before passing it to the
|
|
|
|
Linux kernel.
|
|
|
|
When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
|
|
|
|
"clocks_in_mhz=1" is automatically included in the
|
|
|
|
default environment.
|
|
|
|
|
|
|
|
CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only]
|
|
|
|
|
|
|
|
When transfering memsize parameter to linux, some versions
|
|
|
|
expect it to be in bytes, others in MB.
|
|
|
|
Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
|
|
|
|
|
|
|
|
CONFIG_OF_LIBFDT / CONFIG_OF_FLAT_TREE
|
|
|
|
|
|
|
|
New kernel versions are expecting firmware settings to be
|
|
|
|
passed using flattened device trees (based on open firmware
|
|
|
|
concepts).
|
|
|
|
|
|
|
|
CONFIG_OF_LIBFDT
|
|
|
|
* New libfdt-based support
|
|
|
|
* Adds the "fdt" command
|
|
|
|
* The bootm command automatically updates the fdt
|
|
|
|
|
|
|
|
CONFIG_OF_FLAT_TREE
|
|
|
|
* Deprecated, see CONFIG_OF_LIBFDT
|
|
|
|
* Original ft_build.c-based support
|
|
|
|
* Automatically modifies the dft as part of the bootm command
|
|
|
|
* The environment variable "disable_of", when set,
|
|
|
|
disables this functionality.
|
|
|
|
|
|
|
|
OF_CPU - The proper name of the cpus node.
|
|
|
|
OF_SOC - The proper name of the soc node.
|
|
|
|
OF_TBCLK - The timebase frequency.
|
|
|
|
OF_STDOUT_PATH - The path to the console device
|
|
|
|
|
|
|
|
boards with QUICC Engines require OF_QE to set UCC mac addresses
|
|
|
|
|
|
|
|
CONFIG_OF_BOARD_SETUP
|
|
|
|
|
|
|
|
Board code has addition modification that it wants to make
|
|
|
|
to the flat device tree before handing it off to the kernel
|
|
|
|
|
|
|
|
CONFIG_OF_BOOT_CPU
|
|
|
|
|
|
|
|
This define fills in the correct boot cpu in the boot
|
|
|
|
param header, the default value is zero if undefined.
|
|
|
|
|
|
|
|
- Serial Ports:
|
|
|
|
CFG_PL010_SERIAL
|
|
|
|
|
|
|
|
Define this if you want support for Amba PrimeCell PL010 UARTs.
|
|
|
|
|
|
|
|
CFG_PL011_SERIAL
|
|
|
|
|
|
|
|
Define this if you want support for Amba PrimeCell PL011 UARTs.
|
|
|
|
|
|
|
|
CONFIG_PL011_CLOCK
|
|
|
|
|
|
|
|
If you have Amba PrimeCell PL011 UARTs, set this variable to
|
|
|
|
the clock speed of the UARTs.
|
|
|
|
|
|
|
|
CONFIG_PL01x_PORTS
|
|
|
|
|
|
|
|
If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
|
|
|
|
define this to a list of base addresses for each (supported)
|
|
|
|
port. See e.g. include/configs/versatile.h
|
|
|
|
|
|
|
|
|
|
|
|
- Console Interface:
|
|
|
|
Depending on board, define exactly one serial port
|
|
|
|
(like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
|
|
|
|
CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
|
|
|
|
console by defining CONFIG_8xx_CONS_NONE
|
|
|
|
|
|
|
|
Note: if CONFIG_8xx_CONS_NONE is defined, the serial
|
|
|
|
port routines must be defined elsewhere
|
|
|
|
(i.e. serial_init(), serial_getc(), ...)
|
|
|
|
|
|
|
|
CONFIG_CFB_CONSOLE
|
|
|
|
Enables console device for a color framebuffer. Needs following
|
|
|
|
defines (cf. smiLynxEM, i8042, board/eltec/bab7xx)
|
|
|
|
VIDEO_FB_LITTLE_ENDIAN graphic memory organisation
|
|
|
|
(default big endian)
|
|
|
|
VIDEO_HW_RECTFILL graphic chip supports
|
|
|
|
rectangle fill
|
|
|
|
(cf. smiLynxEM)
|
|
|
|
VIDEO_HW_BITBLT graphic chip supports
|
|
|
|
bit-blit (cf. smiLynxEM)
|
|
|
|
VIDEO_VISIBLE_COLS visible pixel columns
|
|
|
|
(cols=pitch)
|
|
|
|
VIDEO_VISIBLE_ROWS visible pixel rows
|
|
|
|
VIDEO_PIXEL_SIZE bytes per pixel
|
|
|
|
VIDEO_DATA_FORMAT graphic data format
|
|
|
|
(0-5, cf. cfb_console.c)
|
|
|
|
VIDEO_FB_ADRS framebuffer address
|
|
|
|
VIDEO_KBD_INIT_FCT keyboard int fct
|
|
|
|
(i.e. i8042_kbd_init())
|
|
|
|
VIDEO_TSTC_FCT test char fct
|
|
|
|
(i.e. i8042_tstc)
|
|
|
|
VIDEO_GETC_FCT get char fct
|
|
|
|
(i.e. i8042_getc)
|
|
|
|
CONFIG_CONSOLE_CURSOR cursor drawing on/off
|
|
|
|
(requires blink timer
|
|
|
|
cf. i8042.c)
|
|
|
|
CFG_CONSOLE_BLINK_COUNT blink interval (cf. i8042.c)
|
|
|
|
CONFIG_CONSOLE_TIME display time/date info in
|
|
|
|
upper right corner
|
|
|
|
(requires CONFIG_CMD_DATE)
|
|
|
|
CONFIG_VIDEO_LOGO display Linux logo in
|
|
|
|
upper left corner
|
|
|
|
CONFIG_VIDEO_BMP_LOGO use bmp_logo.h instead of
|
|
|
|
linux_logo.h for logo.
|
|
|
|
Requires CONFIG_VIDEO_LOGO
|
|
|
|
CONFIG_CONSOLE_EXTRA_INFO
|
|
|
|
addional board info beside
|
|
|
|
the logo
|
|
|
|
|
|
|
|
When CONFIG_CFB_CONSOLE is defined, video console is
|
|
|
|
default i/o. Serial console can be forced with
|
|
|
|
environment 'console=serial'.
|
|
|
|
|
|
|
|
When CONFIG_SILENT_CONSOLE is defined, all console
|
|
|
|
messages (by U-Boot and Linux!) can be silenced with
|
|
|
|
the "silent" environment variable. See
|
|
|
|
doc/README.silent for more information.
|
|
|
|
|
|
|
|
- Console Baudrate:
|
|
|
|
CONFIG_BAUDRATE - in bps
|
|
|
|
Select one of the baudrates listed in
|
|
|
|
CFG_BAUDRATE_TABLE, see below.
|
|
|
|
CFG_BRGCLK_PRESCALE, baudrate prescale
|
|
|
|
|
|
|
|
- Interrupt driven serial port input:
|
|
|
|
CONFIG_SERIAL_SOFTWARE_FIFO
|
|
|
|
|
|
|
|
PPC405GP only.
|
|
|
|
Use an interrupt handler for receiving data on the
|
|
|
|
serial port. It also enables using hardware handshake
|
|
|
|
(RTS/CTS) and UART's built-in FIFO. Set the number of
|
|
|
|
bytes the interrupt driven input buffer should have.
|
|
|
|
|
|
|
|
Leave undefined to disable this feature, including
|
|
|
|
disable the buffer and hardware handshake.
|
|
|
|
|
|
|
|
- Console UART Number:
|
|
|
|
CONFIG_UART1_CONSOLE
|
|
|
|
|
|
|
|
AMCC PPC4xx only.
|
|
|
|
If defined internal UART1 (and not UART0) is used
|
|
|
|
as default U-Boot console.
|
|
|
|
|
|
|
|
- Boot Delay: CONFIG_BOOTDELAY - in seconds
|
|
|
|
Delay before automatically booting the default image;
|
|
|
|
set to -1 to disable autoboot.
|
|
|
|
|
|
|
|
See doc/README.autoboot for these options that
|
|
|
|
work with CONFIG_BOOTDELAY. None are required.
|
|
|
|
CONFIG_BOOT_RETRY_TIME
|
|
|
|
CONFIG_BOOT_RETRY_MIN
|
|
|
|
CONFIG_AUTOBOOT_KEYED
|
|
|
|
CONFIG_AUTOBOOT_PROMPT
|
|
|
|
CONFIG_AUTOBOOT_DELAY_STR
|
|
|
|
CONFIG_AUTOBOOT_STOP_STR
|
|
|
|
CONFIG_AUTOBOOT_DELAY_STR2
|
|
|
|
CONFIG_AUTOBOOT_STOP_STR2
|
|
|
|
CONFIG_ZERO_BOOTDELAY_CHECK
|
|
|
|
CONFIG_RESET_TO_RETRY
|
|
|
|
|
|
|
|
- Autoboot Command:
|
|
|
|
CONFIG_BOOTCOMMAND
|
|
|
|
Only needed when CONFIG_BOOTDELAY is enabled;
|
|
|
|
define a command string that is automatically executed
|
|
|
|
when no character is read on the console interface
|
|
|
|
within "Boot Delay" after reset.
|
|
|
|
|
|
|
|
CONFIG_BOOTARGS
|
|
|
|
This can be used to pass arguments to the bootm
|
|
|
|
command. The value of CONFIG_BOOTARGS goes into the
|
|
|
|
environment value "bootargs".
|
|
|
|
|
|
|
|
CONFIG_RAMBOOT and CONFIG_NFSBOOT
|
|
|
|
The value of these goes into the environment as
|
|
|
|
"ramboot" and "nfsboot" respectively, and can be used
|
|
|
|
as a convenience, when switching between booting from
|
|
|
|
ram and nfs.
|
|
|
|
|
|
|
|
- Pre-Boot Commands:
|
|
|
|
CONFIG_PREBOOT
|
|
|
|
|
|
|
|
When this option is #defined, the existence of the
|
|
|
|
environment variable "preboot" will be checked
|
|
|
|
immediately before starting the CONFIG_BOOTDELAY
|
|
|
|
countdown and/or running the auto-boot command resp.
|
|
|
|
entering interactive mode.
|
|
|
|
|
|
|
|
This feature is especially useful when "preboot" is
|
|
|
|
automatically generated or modified. For an example
|
|
|
|
see the LWMON board specific code: here "preboot" is
|
|
|
|
modified when the user holds down a certain
|
|
|
|
combination of keys on the (special) keyboard when
|
|
|
|
booting the systems
|
|
|
|
|
|
|
|
- Serial Download Echo Mode:
|
|
|
|
CONFIG_LOADS_ECHO
|
|
|
|
If defined to 1, all characters received during a
|
|
|
|
serial download (using the "loads" command) are
|
|
|
|
echoed back. This might be needed by some terminal
|
|
|
|
emulations (like "cu"), but may as well just take
|
|
|
|
time on others. This setting #define's the initial
|
|
|
|
value of the "loads_echo" environment variable.
|
|
|
|
|
|
|
|
- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
|
|
|
|
CONFIG_KGDB_BAUDRATE
|
|
|
|
Select one of the baudrates listed in
|
|
|
|
CFG_BAUDRATE_TABLE, see below.
|
|
|
|
|
|
|
|
- Monitor Functions:
|
|
|
|
Monitor commands can be included or excluded
|
|
|
|
from the build by using the #include files
|
|
|
|
"config_cmd_all.h" and #undef'ing unwanted
|
|
|
|
commands, or using "config_cmd_default.h"
|
|
|
|
and augmenting with additional #define's
|
|
|
|
for wanted commands.
|
|
|
|
|
|
|
|
The default command configuration includes all commands
|
|
|
|
except those marked below with a "*".
|
|
|
|
|
|
|
|
CONFIG_CMD_ASKENV * ask for env variable
|
|
|
|
CONFIG_CMD_AUTOSCRIPT Autoscript Support
|
|
|
|
CONFIG_CMD_BDI bdinfo
|
|
|
|
CONFIG_CMD_BEDBUG * Include BedBug Debugger
|
|
|
|
CONFIG_CMD_BMP * BMP support
|
|
|
|
CONFIG_CMD_BSP * Board specific commands
|
|
|
|
CONFIG_CMD_BOOTD bootd
|
|
|
|
CONFIG_CMD_CACHE * icache, dcache
|
|
|
|
CONFIG_CMD_CONSOLE coninfo
|
|
|
|
CONFIG_CMD_DATE * support for RTC, date/time...
|
|
|
|
CONFIG_CMD_DHCP * DHCP support
|
|
|
|
CONFIG_CMD_DIAG * Diagnostics
|
|
|
|
CONFIG_CMD_DOC * Disk-On-Chip Support
|
|
|
|
CONFIG_CMD_DTT * Digital Therm and Thermostat
|
|
|
|
CONFIG_CMD_ECHO echo arguments
|
|
|
|
CONFIG_CMD_EEPROM * EEPROM read/write support
|
|
|
|
CONFIG_CMD_ELF * bootelf, bootvx
|
|
|
|
CONFIG_CMD_ENV saveenv
|
|
|
|
CONFIG_CMD_FDC * Floppy Disk Support
|
|
|
|
CONFIG_CMD_FAT * FAT partition support
|
|
|
|
CONFIG_CMD_FDOS * Dos diskette Support
|
|
|
|
CONFIG_CMD_FLASH flinfo, erase, protect
|
|
|
|
CONFIG_CMD_FPGA FPGA device initialization support
|
|
|
|
CONFIG_CMD_HWFLOW * RTS/CTS hw flow control
|
|
|
|
CONFIG_CMD_I2C * I2C serial bus support
|
|
|
|
CONFIG_CMD_IDE * IDE harddisk support
|
|
|
|
CONFIG_CMD_IMI iminfo
|
|
|
|
CONFIG_CMD_IMLS List all found images
|
|
|
|
CONFIG_CMD_IMMAP * IMMR dump support
|
|
|
|
CONFIG_CMD_IRQ * irqinfo
|
|
|
|
CONFIG_CMD_ITEST Integer/string test of 2 values
|
|
|
|
CONFIG_CMD_JFFS2 * JFFS2 Support
|
|
|
|
CONFIG_CMD_KGDB * kgdb
|
|
|
|
CONFIG_CMD_LOADB loadb
|
|
|
|
CONFIG_CMD_LOADS loads
|
|
|
|
CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base,
|
|
|
|
loop, loopw, mtest
|
|
|
|
CONFIG_CMD_MISC Misc functions like sleep etc
|
|
|
|
CONFIG_CMD_MMC * MMC memory mapped support
|
|
|
|
CONFIG_CMD_MII * MII utility commands
|
|
|
|
CONFIG_CMD_NAND * NAND support
|
|
|
|
CONFIG_CMD_NET bootp, tftpboot, rarpboot
|
|
|
|
CONFIG_CMD_PCI * pciinfo
|
|
|
|
CONFIG_CMD_PCMCIA * PCMCIA support
|
|
|
|
CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network
|
|
|
|
host
|
|
|
|
CONFIG_CMD_PORTIO * Port I/O
|
|
|
|
CONFIG_CMD_REGINFO * Register dump
|
|
|
|
CONFIG_CMD_RUN run command in env variable
|
|
|
|
CONFIG_CMD_SAVES * save S record dump
|
|
|
|
CONFIG_CMD_SCSI * SCSI Support
|
|
|
|
CONFIG_CMD_SDRAM * print SDRAM configuration information
|
|
|
|
(requires CONFIG_CMD_I2C)
|
|
|
|
CONFIG_CMD_SETGETDCR Support for DCR Register access
|
|
|
|
(4xx only)
|
|
|
|
CONFIG_CMD_SPI * SPI serial bus support
|
|
|
|
CONFIG_CMD_USB * USB support
|
|
|
|
CONFIG_CMD_VFD * VFD support (TRAB)
|
|
|
|
CONFIG_CMD_BSP * Board SPecific functions
|
|
|
|
CONFIG_CMD_CDP * Cisco Discover Protocol support
|
|
|
|
CONFIG_CMD_FSL * Microblaze FSL support
|
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE: If you want all functions except of network
|
|
|
|
support you can write:
|
|
|
|
|
|
|
|
#include "config_cmd_all.h"
|
|
|
|
#undef CONFIG_CMD_NET
|
|
|
|
|
|
|
|
Other Commands:
|
|
|
|
fdt (flattened device tree) command: CONFIG_OF_LIBFDT
|
|
|
|
|
|
|
|
Note: Don't enable the "icache" and "dcache" commands
|
|
|
|
(configuration option CONFIG_CMD_CACHE) unless you know
|
|
|
|
what you (and your U-Boot users) are doing. Data
|
|
|
|
cache cannot be enabled on systems like the 8xx or
|
|
|
|
8260 (where accesses to the IMMR region must be
|
|
|
|
uncached), and it cannot be disabled on all other
|
|
|
|
systems where we (mis-) use the data cache to hold an
|
|
|
|
initial stack and some data.
|
|
|
|
|
|
|
|
|
|
|
|
XXX - this list needs to get updated!
|
|
|
|
|
|
|
|
- Watchdog:
|
|
|
|
CONFIG_WATCHDOG
|
|
|
|
If this variable is defined, it enables watchdog
|
|
|
|
support. There must be support in the platform specific
|
|
|
|
code for a watchdog. For the 8xx and 8260 CPUs, the
|
|
|
|
SIU Watchdog feature is enabled in the SYPCR
|
|
|
|
register.
|
|
|
|
|
|
|
|
- U-Boot Version:
|
|
|
|
CONFIG_VERSION_VARIABLE
|
|
|
|
If this variable is defined, an environment variable
|
|
|
|
named "ver" is created by U-Boot showing the U-Boot
|
|
|
|
version as printed by the "version" command.
|
|
|
|
This variable is readonly.
|
|
|
|
|
|
|
|
- Real-Time Clock:
|
|
|
|
|
|
|
|
When CONFIG_CMD_DATE is selected, the type of the RTC
|
|
|
|
has to be selected, too. Define exactly one of the
|
|
|
|
following options:
|
|
|
|
|
|
|
|
CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx
|
|
|
|
CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
|
|
|
|
CONFIG_RTC_MC146818 - use MC146818 RTC
|
|
|
|
CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
|
|
|
|
CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
|
|
|
|
CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
|
|
|
|
CONFIG_RTC_DS164x - use Dallas DS164x RTC
|
|
|
|
CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC
|
|
|
|
CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC
|
|
|
|
CFG_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337
|
|
|
|
|
|
|
|
Note that if the RTC uses I2C, then the I2C interface
|
|
|
|
must also be configured. See I2C Support, below.
|
|
|
|
|
|
|
|
- Timestamp Support:
|
|
|
|
|
|
|
|
When CONFIG_TIMESTAMP is selected, the timestamp
|
|
|
|
(date and time) of an image is printed by image
|
|
|
|
commands like bootm or iminfo. This option is
|
|
|
|
automatically enabled when you select CONFIG_CMD_DATE .
|
|
|
|
|
|
|
|
- Partition Support:
|
|
|
|
CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
|
|
|
|
and/or CONFIG_ISO_PARTITION
|
|
|
|
|
|
|
|
If IDE or SCSI support is enabled (CONFIG_CMD_IDE or
|
|
|
|
CONFIG_CMD_SCSI) you must configure support for at
|
|
|
|
least one partition type as well.
|
|
|
|
|
|
|
|
- IDE Reset method:
|
|
|
|
CONFIG_IDE_RESET_ROUTINE - this is defined in several
|
|
|
|
board configurations files but used nowhere!
|
|
|
|
|
|
|
|
CONFIG_IDE_RESET - is this is defined, IDE Reset will
|
|
|
|
be performed by calling the function
|
|
|
|
ide_set_reset(int reset)
|
|
|
|
which has to be defined in a board specific file
|
|
|
|
|
|
|
|
- ATAPI Support:
|
|
|
|
CONFIG_ATAPI
|
|
|
|
|
|
|
|
Set this to enable ATAPI support.
|
|
|
|
|
|
|
|
- LBA48 Support
|
|
|
|
CONFIG_LBA48
|
|
|
|
|
|
|
|
Set this to enable support for disks larger than 137GB
|
|
|
|
Also look at CFG_64BIT_LBA ,CFG_64BIT_VSPRINTF and CFG_64BIT_STRTOUL
|
|
|
|
Whithout these , LBA48 support uses 32bit variables and will 'only'
|
|
|
|
support disks up to 2.1TB.
|
|
|
|
|
|
|
|
CFG_64BIT_LBA:
|
|
|
|
When enabled, makes the IDE subsystem use 64bit sector addresses.
|
|
|
|
Default is 32bit.
|
|
|
|
|
|
|
|
- SCSI Support:
|
|
|
|
At the moment only there is only support for the
|
|
|
|
SYM53C8XX SCSI controller; define
|
|
|
|
CONFIG_SCSI_SYM53C8XX to enable it.
|
|
|
|
|
|
|
|
CFG_SCSI_MAX_LUN [8], CFG_SCSI_MAX_SCSI_ID [7] and
|
|
|
|
CFG_SCSI_MAX_DEVICE [CFG_SCSI_MAX_SCSI_ID *
|
|
|
|
CFG_SCSI_MAX_LUN] can be adjusted to define the
|
|
|
|
maximum numbers of LUNs, SCSI ID's and target
|
|
|
|
devices.
|
|
|
|
CFG_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
|
|
|
|
|
|
|
|
- NETWORK Support (PCI):
|
|
|
|
CONFIG_E1000
|
|
|
|
Support for Intel 8254x gigabit chips.
|
|
|
|
|
|
|
|
CONFIG_E1000_FALLBACK_MAC
|
|
|
|
default MAC for empty eeprom after production.
|
|
|
|
|
|
|
|
CONFIG_EEPRO100
|
|
|
|
Support for Intel 82557/82559/82559ER chips.
|
|
|
|
Optional CONFIG_EEPRO100_SROM_WRITE enables eeprom
|
|
|
|
write routine for first time initialisation.
|
|
|
|
|
|
|
|
CONFIG_TULIP
|
|
|
|
Support for Digital 2114x chips.
|
|
|
|
Optional CONFIG_TULIP_SELECT_MEDIA for board specific
|
|
|
|
modem chip initialisation (KS8761/QS6611).
|
|
|
|
|
|
|
|
CONFIG_NATSEMI
|
|
|
|
Support for National dp83815 chips.
|
|
|
|
|
|
|
|
CONFIG_NS8382X
|
|
|
|
Support for National dp8382[01] gigabit chips.
|
|
|
|
|
|
|
|
- NETWORK Support (other):
|
|
|
|
|
|
|
|
CONFIG_DRIVER_LAN91C96
|
|
|
|
Support for SMSC's LAN91C96 chips.
|
|
|
|
|
|
|
|
CONFIG_LAN91C96_BASE
|
|
|
|
Define this to hold the physical address
|
|
|
|
of the LAN91C96's I/O space
|
|
|
|
|
|
|
|
CONFIG_LAN91C96_USE_32_BIT
|
|
|
|
Define this to enable 32 bit addressing
|
|
|
|
|
|
|
|
CONFIG_DRIVER_SMC91111
|
|
|
|
Support for SMSC's LAN91C111 chip
|
|
|
|
|
|
|
|
CONFIG_SMC91111_BASE
|
|
|
|
Define this to hold the physical address
|
|
|
|
of the device (I/O space)
|
|
|
|
|
|
|
|
CONFIG_SMC_USE_32_BIT
|
|
|
|
Define this if data bus is 32 bits
|
|
|
|
|
|
|
|
CONFIG_SMC_USE_IOFUNCS
|
|
|
|
Define this to use i/o functions instead of macros
|
|
|
|
(some hardware wont work with macros)
|
|
|
|
|
|
|
|
- USB Support:
|
|
|
|
At the moment only the UHCI host controller is
|
|
|
|
supported (PIP405, MIP405, MPC5200); define
|
|
|
|
CONFIG_USB_UHCI to enable it.
|
|
|
|
define CONFIG_USB_KEYBOARD to enable the USB Keyboard
|
|
|
|
and define CONFIG_USB_STORAGE to enable the USB
|
|
|
|
storage devices.
|
|
|
|
Note:
|
|
|
|
Supported are USB Keyboards and USB Floppy drives
|
|
|
|
(TEAC FD-05PUB).
|
|
|
|
MPC5200 USB requires additional defines:
|
|
|
|
CONFIG_USB_CLOCK
|
|
|
|
for 528 MHz Clock: 0x0001bbbb
|
|
|
|
CONFIG_USB_CONFIG
|
|
|
|
for differential drivers: 0x00001000
|
|
|
|
for single ended drivers: 0x00005000
|
|
|
|
CFG_USB_EVENT_POLL
|
|
|
|
May be defined to allow interrupt polling
|
|
|
|
instead of using asynchronous interrupts
|
|
|
|
|
|
|
|
- USB Device:
|
|
|
|
Define the below if you wish to use the USB console.
|
|
|
|
Once firmware is rebuilt from a serial console issue the
|
|
|
|
command "setenv stdin usbtty; setenv stdout usbtty" and
|
|
|
|
attach your usb cable. The Unix command "dmesg" should print
|
|
|
|
it has found a new device. The environment variable usbtty
|
|
|
|
can be set to gserial or cdc_acm to enable your device to
|
|
|
|
appear to a USB host as a Linux gserial device or a
|
|
|
|
Common Device Class Abstract Control Model serial device.
|
|
|
|
If you select usbtty = gserial you should be able to enumerate
|
|
|
|
a Linux host by
|
|
|
|
# modprobe usbserial vendor=0xVendorID product=0xProductID
|
|
|
|
else if using cdc_acm, simply setting the environment
|
|
|
|
variable usbtty to be cdc_acm should suffice. The following
|
|
|
|
might be defined in YourBoardName.h
|
|
|
|
|
|
|
|
CONFIG_USB_DEVICE
|
|
|
|
Define this to build a UDC device
|
|
|
|
|
|
|
|
CONFIG_USB_TTY
|
|
|
|
Define this to have a tty type of device available to
|
|
|
|
talk to the UDC device
|
|
|
|
|
|
|
|
CFG_CONSOLE_IS_IN_ENV
|
|
|
|
Define this if you want stdin, stdout &/or stderr to
|
|
|
|
be set to usbtty.
|
|
|
|
|
|
|
|
mpc8xx:
|
|
|
|
CFG_USB_EXTC_CLK 0xBLAH
|
|
|
|
Derive USB clock from external clock "blah"
|
|
|
|
- CFG_USB_EXTC_CLK 0x02
|
|
|
|
|
|
|
|
CFG_USB_BRG_CLK 0xBLAH
|
|
|
|
Derive USB clock from brgclk
|
|
|
|
- CFG_USB_BRG_CLK 0x04
|
|
|
|
|
|
|
|
If you have a USB-IF assigned VendorID then you may wish to
|
|
|
|
define your own vendor specific values either in BoardName.h
|
|
|
|
or directly in usbd_vendor_info.h. If you don't define
|
|
|
|
CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
|
|
|
|
CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
|
|
|
|
should pretend to be a Linux device to it's target host.
|
|
|
|
|
|
|
|
CONFIG_USBD_MANUFACTURER
|
|
|
|
Define this string as the name of your company for
|
|
|
|
- CONFIG_USBD_MANUFACTURER "my company"
|
|
|
|
|
|
|
|
CONFIG_USBD_PRODUCT_NAME
|
|
|
|
Define this string as the name of your product
|
|
|
|
- CONFIG_USBD_PRODUCT_NAME "acme usb device"
|
|
|
|
|
|
|
|
CONFIG_USBD_VENDORID
|
|
|
|
Define this as your assigned Vendor ID from the USB
|
|
|
|
Implementors Forum. This *must* be a genuine Vendor ID
|
|
|
|
to avoid polluting the USB namespace.
|
|
|
|
- CONFIG_USBD_VENDORID 0xFFFF
|
|
|
|
|
|
|
|
CONFIG_USBD_PRODUCTID
|
|
|
|
Define this as the unique Product ID
|
|
|
|
for your device
|
|
|
|
- CONFIG_USBD_PRODUCTID 0xFFFF
|
|
|
|
|
|
|
|
|
|
|
|
- MMC Support:
|
|
|
|
The MMC controller on the Intel PXA is supported. To
|
|
|
|
enable this define CONFIG_MMC. The MMC can be
|
|
|
|
accessed from the boot prompt by mapping the device
|
|
|
|
to physical memory similar to flash. Command line is
|
|
|
|
enabled with CONFIG_CMD_MMC. The MMC driver also works with
|
|
|
|
the FAT fs. This is enabled with CONFIG_CMD_FAT.
|
|
|
|
|
|
|
|
- Journaling Flash filesystem support:
|
|
|
|
CONFIG_JFFS2_NAND, CONFIG_JFFS2_NAND_OFF, CONFIG_JFFS2_NAND_SIZE,
|
|
|
|
CONFIG_JFFS2_NAND_DEV
|
|
|
|
Define these for a default partition on a NAND device
|
|
|
|
|
|
|
|
CFG_JFFS2_FIRST_SECTOR,
|
|
|
|
CFG_JFFS2_FIRST_BANK, CFG_JFFS2_NUM_BANKS
|
|
|
|
Define these for a default partition on a NOR device
|
|
|
|
|
|
|
|
CFG_JFFS_CUSTOM_PART
|
|
|
|
Define this to create an own partition. You have to provide a
|
|
|
|
function struct part_info* jffs2_part_info(int part_num)
|
|
|
|
|
|
|
|
If you define only one JFFS2 partition you may also want to
|
|
|
|
#define CFG_JFFS_SINGLE_PART 1
|
|
|
|
to disable the command chpart. This is the default when you
|
|
|
|
have not defined a custom partition
|
|
|
|
|
|
|
|
- Keyboard Support:
|
|
|
|
CONFIG_ISA_KEYBOARD
|
|
|
|
|
|
|
|
Define this to enable standard (PC-Style) keyboard
|
|
|
|
support
|
|
|
|
|
|
|
|
CONFIG_I8042_KBD
|
|
|
|
Standard PC keyboard driver with US (is default) and
|
|
|
|
GERMAN key layout (switch via environment 'keymap=de') support.
|
|
|
|
Export function i8042_kbd_init, i8042_tstc and i8042_getc
|
|
|
|
for cfb_console. Supports cursor blinking.
|
|
|
|
|
|
|
|
- Video support:
|
|
|
|
CONFIG_VIDEO
|
|
|
|
|
|
|
|
Define this to enable video support (for output to
|
|
|
|
video).
|
|
|
|
|
|
|
|
CONFIG_VIDEO_CT69000
|
|
|
|
|
|
|
|
Enable Chips & Technologies 69000 Video chip
|
|
|
|
|
|
|
|
CONFIG_VIDEO_SMI_LYNXEM
|
|
|
|
Enable Silicon Motion SMI 712/710/810 Video chip. The
|
|
|
|
video output is selected via environment 'videoout'
|
|
|
|
(1 = LCD and 2 = CRT). If videoout is undefined, CRT is
|
|
|
|
assumed.
|
|
|
|
|
|
|
|
For the CT69000 and SMI_LYNXEM drivers, videomode is
|
|
|
|
selected via environment 'videomode'. Two diferent ways
|
|
|
|
are possible:
|
|
|
|
- "videomode=num" 'num' is a standard LiLo mode numbers.
|
|
|
|
Following standard modes are supported (* is default):
|
|
|
|
|
|
|
|
Colors 640x480 800x600 1024x768 1152x864 1280x1024
|
|
|
|
-------------+---------------------------------------------
|
|
|
|
8 bits | 0x301* 0x303 0x305 0x161 0x307
|
|
|
|
15 bits | 0x310 0x313 0x316 0x162 0x319
|
|
|
|
16 bits | 0x311 0x314 0x317 0x163 0x31A
|
|
|
|
24 bits | 0x312 0x315 0x318 ? 0x31B
|
|
|
|
-------------+---------------------------------------------
|
|
|
|
(i.e. setenv videomode 317; saveenv; reset;)
|
|
|
|
|
|
|
|
- "videomode=bootargs" all the video parameters are parsed
|
|
|
|
from the bootargs. (See drivers/video/videomodes.c)
|
|
|
|
|
|
|
|
|
|
|
|
CONFIG_VIDEO_SED13806
|
|
|
|
Enable Epson SED13806 driver. This driver supports 8bpp
|
|
|
|
and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
|
|
|
|
or CONFIG_VIDEO_SED13806_16BPP
|
|
|
|
|
|
|
|
- Keyboard Support:
|
|
|
|
CONFIG_KEYBOARD
|
|
|
|
|
|
|
|
Define this to enable a custom keyboard support.
|
|
|
|
This simply calls drv_keyboard_init() which must be
|
|
|
|
defined in your board-specific files.
|
|
|
|
The only board using this so far is RBC823.
|
|
|
|
|
|
|
|
- LCD Support: CONFIG_LCD
|
|
|
|
|
|
|
|
Define this to enable LCD support (for output to LCD
|
|
|
|
display); also select one of the supported displays
|
|
|
|
by defining one of these:
|
|
|
|
|
|
|
|
CONFIG_NEC_NL6448AC33:
|
|
|
|
|
|
|
|
NEC NL6448AC33-18. Active, color, single scan.
|
|
|
|
|
|
|
|
CONFIG_NEC_NL6448BC20
|
|
|
|
|
|
|
|
NEC NL6448BC20-08. 6.5", 640x480.
|
|
|
|
Active, color, single scan.
|
|
|
|
|
|
|
|
CONFIG_NEC_NL6448BC33_54
|
|
|
|
|
|
|
|
NEC NL6448BC33-54. 10.4", 640x480.
|
|
|
|
Active, color, single scan.
|
|
|
|
|
|
|
|
CONFIG_SHARP_16x9
|
|
|
|
|
|
|
|
Sharp 320x240. Active, color, single scan.
|
|
|
|
It isn't 16x9, and I am not sure what it is.
|
|
|
|
|
|
|
|
CONFIG_SHARP_LQ64D341
|
|
|
|
|
|
|
|
Sharp LQ64D341 display, 640x480.
|
|
|
|
Active, color, single scan.
|
|
|
|
|
|
|
|
CONFIG_HLD1045
|
|
|
|
|
|
|
|
HLD1045 display, 640x480.
|
|
|
|
Active, color, single scan.
|
|
|
|
|
|
|
|
CONFIG_OPTREX_BW
|
|
|
|
|
|
|
|
Optrex CBL50840-2 NF-FW 99 22 M5
|
|
|
|
or
|
|
|
|
Hitachi LMG6912RPFC-00T
|
|
|
|
or
|
|
|
|
Hitachi SP14Q002
|
|
|
|
|
|
|
|
320x240. Black & white.
|
|
|
|
|
|
|
|
Normally display is black on white background; define
|
|
|
|
CFG_WHITE_ON_BLACK to get it inverted.
|
|
|
|
|
|
|
|
- Splash Screen Support: CONFIG_SPLASH_SCREEN
|
|
|
|
|
|
|
|
If this option is set, the environment is checked for
|
|
|
|
a variable "splashimage". If found, the usual display
|
|
|
|
of logo, copyright and system information on the LCD
|
|
|
|
is suppressed and the BMP image at the address
|
|
|
|
specified in "splashimage" is loaded instead. The
|
|
|
|
console is redirected to the "nulldev", too. This
|
|
|
|
allows for a "silent" boot where a splash screen is
|
|
|
|
loaded very quickly after power-on.
|
|
|
|
|
|
|
|
- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP
|
|
|
|
|
|
|
|
If this option is set, additionally to standard BMP
|
|
|
|
images, gzipped BMP images can be displayed via the
|
|
|
|
splashscreen support or the bmp command.
|
|
|
|
|
|
|
|
- Compression support:
|
|
|
|
CONFIG_BZIP2
|
|
|
|
|
|
|
|
If this option is set, support for bzip2 compressed
|
|
|
|
images is included. If not, only uncompressed and gzip
|
|
|
|
compressed images are supported.
|
|
|
|
|
|
|
|
NOTE: the bzip2 algorithm requires a lot of RAM, so
|
|
|
|
the malloc area (as defined by CFG_MALLOC_LEN) should
|
|
|
|
be at least 4MB.
|
|
|
|
|
|
|
|
- MII/PHY support:
|
|
|
|
CONFIG_PHY_ADDR
|
|
|
|
|
|
|
|
The address of PHY on MII bus.
|
|
|
|
|
|
|
|
CONFIG_PHY_CLOCK_FREQ (ppc4xx)
|
|
|
|
|
|
|
|
The clock frequency of the MII bus
|
|
|
|
|
|
|
|
CONFIG_PHY_GIGE
|
|
|
|
|
|
|
|
If this option is set, support for speed/duplex
|
|
|
|
detection of Gigabit PHY is included.
|
|
|
|
|
|
|
|
CONFIG_PHY_RESET_DELAY
|
|
|
|
|
|
|
|
Some PHY like Intel LXT971A need extra delay after
|
|
|
|
reset before any MII register access is possible.
|
|
|
|
For such PHY, set this option to the usec delay
|
|
|
|
required. (minimum 300usec for LXT971A)
|
|
|
|
|
|
|
|
CONFIG_PHY_CMD_DELAY (ppc4xx)
|
|
|
|
|
|
|
|
Some PHY like Intel LXT971A need extra delay after
|
|
|
|
command issued before MII status register can be read
|
|
|
|
|
|
|
|
- Ethernet address:
|
|
|
|
CONFIG_ETHADDR
|
|
|
|
CONFIG_ETH2ADDR
|
|
|
|
CONFIG_ETH3ADDR
|
|
|
|
|
|
|
|
Define a default value for ethernet address to use
|
|
|
|
for the respective ethernet interface, in case this
|
|
|
|
is not determined automatically.
|
|
|
|
|
|
|
|
- IP address:
|
|
|
|
CONFIG_IPADDR
|
|
|
|
|
|
|
|
Define a default value for the IP address to use for
|
|
|
|
the default ethernet interface, in case this is not
|
|
|
|
determined through e.g. bootp.
|
|
|
|
|
|
|
|
- Server IP address:
|
|
|
|
CONFIG_SERVERIP
|
|
|
|
|
|
|
|
Defines a default value for theIP address of a TFTP
|
|
|
|
server to contact when using the "tftboot" command.
|
|
|
|
|
|
|
|
- Multicast TFTP Mode:
|
|
|
|
CONFIG_MCAST_TFTP
|
|
|
|
|
|
|
|
Defines whether you want to support multicast TFTP as per
|
|
|
|
rfc-2090; for example to work with atftp. Lets lots of targets
|
|
|
|
tftp down the same boot image concurrently. Note: the ethernet
|
|
|
|
driver in use must provide a function: mcast() to join/leave a
|
|
|
|
multicast group.
|
|
|
|
|
|
|
|
CONFIG_BOOTP_RANDOM_DELAY
|
|
|
|
- BOOTP Recovery Mode:
|
|
|
|
CONFIG_BOOTP_RANDOM_DELAY
|
|
|
|
|
|
|
|
If you have many targets in a network that try to
|
|
|
|
boot using BOOTP, you may want to avoid that all
|
|
|
|
systems send out BOOTP requests at precisely the same
|
|
|
|
moment (which would happen for instance at recovery
|
|
|
|
from a power failure, when all systems will try to
|
|
|
|
boot, thus flooding the BOOTP server. Defining
|
|
|
|
CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
|
|
|
|
inserted before sending out BOOTP requests. The
|
|
|
|
following delays are inserted then:
|
|
|
|
|
|
|
|
1st BOOTP request: delay 0 ... 1 sec
|
|
|
|
2nd BOOTP request: delay 0 ... 2 sec
|
|
|
|
3rd BOOTP request: delay 0 ... 4 sec
|
|
|
|
4th and following
|
|
|
|
BOOTP requests: delay 0 ... 8 sec
|
|
|
|
|
|
|
|
- DHCP Advanced Options:
|
|
|
|
You can fine tune the DHCP functionality by defining
|
|
|
|
CONFIG_BOOTP_* symbols:
|
|
|
|
|
|
|
|
CONFIG_BOOTP_SUBNETMASK
|
|
|
|
CONFIG_BOOTP_GATEWAY
|
|
|
|
CONFIG_BOOTP_HOSTNAME
|
|
|
|
CONFIG_BOOTP_NISDOMAIN
|
|
|
|
CONFIG_BOOTP_BOOTPATH
|
|
|
|
CONFIG_BOOTP_BOOTFILESIZE
|
|
|
|
CONFIG_BOOTP_DNS
|
|
|
|
CONFIG_BOOTP_DNS2
|
|
|
|
CONFIG_BOOTP_SEND_HOSTNAME
|
|
|
|
CONFIG_BOOTP_NTPSERVER
|
|
|
|
CONFIG_BOOTP_TIMEOFFSET
|
|
|
|
CONFIG_BOOTP_VENDOREX
|
|
|
|
|
|
|
|
CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
|
|
|
|
environment variable, not the BOOTP server.
|
|
|
|
|
|
|
|
CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
|
|
|
|
serverip from a DHCP server, it is possible that more
|
|
|
|
than one DNS serverip is offered to the client.
|
|
|
|
If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
|
|
|
|
serverip will be stored in the additional environment
|
|
|
|
variable "dnsip2". The first DNS serverip is always
|
|
|
|
stored in the variable "dnsip", when CONFIG_BOOTP_DNS
|
|
|
|
is defined.
|
|
|
|
|
|
|
|
CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
|
|
|
|
to do a dynamic update of a DNS server. To do this, they
|
|
|
|
need the hostname of the DHCP requester.
|
|
|
|
If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
|
|
|
|
of the "hostname" environment variable is passed as
|
|
|
|
option 12 to the DHCP server.
|
|
|
|
|
|
|
|
CONFIG_BOOTP_DHCP_REQUEST_DELAY
|
|
|
|
|
|
|
|
A 32bit value in microseconds for a delay between
|
|
|
|
receiving a "DHCP Offer" and sending the "DHCP Request".
|
|
|
|
This fixes a problem with certain DHCP servers that don't
|
|
|
|
respond 100% of the time to a "DHCP request". E.g. On an
|
|
|
|
AT91RM9200 processor running at 180MHz, this delay needed
|
|
|
|
to be *at least* 15,000 usec before a Windows Server 2003
|
|
|
|
DHCP server would reply 100% of the time. I recommend at
|
|
|
|
least 50,000 usec to be safe. The alternative is to hope
|
|
|
|
that one of the retries will be successful but note that
|
|
|
|
the DHCP timeout and retry process takes a longer than
|
|
|
|
this delay.
|
|
|
|
|
|
|
|
- CDP Options:
|
|
|
|
CONFIG_CDP_DEVICE_ID
|
|
|
|
|
|
|
|
The device id used in CDP trigger frames.
|
|
|
|
|
|
|
|
CONFIG_CDP_DEVICE_ID_PREFIX
|
|
|
|
|
|
|
|
A two character string which is prefixed to the MAC address
|
|
|
|
of the device.
|
|
|
|
|
|
|
|
CONFIG_CDP_PORT_ID
|
|
|
|
|
|
|
|
A printf format string which contains the ascii name of
|
|
|
|
the port. Normally is set to "eth%d" which sets
|
|
|
|
eth0 for the first ethernet, eth1 for the second etc.
|
|
|
|
|
|
|
|
CONFIG_CDP_CAPABILITIES
|
|
|
|
|
|
|
|
A 32bit integer which indicates the device capabilities;
|
|
|
|
0x00000010 for a normal host which does not forwards.
|
|
|
|
|
|
|
|
CONFIG_CDP_VERSION
|
|
|
|
|
|
|
|
An ascii string containing the version of the software.
|
|
|
|
|
|
|
|
CONFIG_CDP_PLATFORM
|
|
|
|
|
|
|
|
An ascii string containing the name of the platform.
|
|
|
|
|
|
|
|
CONFIG_CDP_TRIGGER
|
|
|
|
|
|
|
|
A 32bit integer sent on the trigger.
|
|
|
|
|
|
|
|
CONFIG_CDP_POWER_CONSUMPTION
|
|
|
|
|
|
|
|
A 16bit integer containing the power consumption of the
|
|
|
|
device in .1 of milliwatts.
|
|
|
|
|
|
|
|
CONFIG_CDP_APPLIANCE_VLAN_TYPE
|
|
|
|
|
|
|
|
A byte containing the id of the VLAN.
|
|
|
|
|
|
|
|
- Status LED: CONFIG_STATUS_LED
|
|
|
|
|
|
|
|
Several configurations allow to display the current
|
|
|
|
status using a LED. For instance, the LED will blink
|
|
|
|
fast while running U-Boot code, stop blinking as
|
|
|
|
soon as a reply to a BOOTP request was received, and
|
|
|
|
start blinking slow once the Linux kernel is running
|
|
|
|
(supported by a status LED driver in the Linux
|
|
|
|
kernel). Defining CONFIG_STATUS_LED enables this
|
|
|
|
feature in U-Boot.
|
|
|
|
|
|
|
|
- CAN Support: CONFIG_CAN_DRIVER
|
|
|
|
|
|
|
|
Defining CONFIG_CAN_DRIVER enables CAN driver support
|
|
|
|
on those systems that support this (optional)
|
|
|
|
feature, like the TQM8xxL modules.
|
|
|
|
|
|
|
|
- I2C Support: CONFIG_HARD_I2C | CONFIG_SOFT_I2C
|
|
|
|
|
|
|
|
These enable I2C serial bus commands. Defining either of
|
|
|
|
(but not both of) CONFIG_HARD_I2C or CONFIG_SOFT_I2C will
|
|
|
|
include the appropriate I2C driver for the selected cpu.
|
|
|
|
|
|
|
|
This will allow you to use i2c commands at the u-boot
|
|
|
|
command line (as long as you set CONFIG_CMD_I2C in
|
|
|
|
CONFIG_COMMANDS) and communicate with i2c based realtime
|
|
|
|
clock chips. See common/cmd_i2c.c for a description of the
|
|
|
|
command line interface.
|
|
|
|
|
|
|
|
CONFIG_I2C_CMD_TREE is a recommended option that places
|
|
|
|
all I2C commands under a single 'i2c' root command. The
|
|
|
|
older 'imm', 'imd', 'iprobe' etc. commands are considered
|
|
|
|
deprecated and may disappear in the future.
|
|
|
|
|
|
|
|
CONFIG_HARD_I2C selects a hardware I2C controller.
|
|
|
|
|
|
|
|
CONFIG_SOFT_I2C configures u-boot to use a software (aka
|
|
|
|
bit-banging) driver instead of CPM or similar hardware
|
|
|
|
support for I2C.
|
|
|
|
|
|
|
|
There are several other quantities that must also be
|
|
|
|
defined when you define CONFIG_HARD_I2C or CONFIG_SOFT_I2C.
|
|
|
|
|
|
|
|
In both cases you will need to define CFG_I2C_SPEED
|
|
|
|
to be the frequency (in Hz) at which you wish your i2c bus
|
|
|
|
to run and CFG_I2C_SLAVE to be the address of this node (ie
|
|
|
|
the cpu's i2c node address).
|
|
|
|
|
|
|
|
Now, the u-boot i2c code for the mpc8xx (cpu/mpc8xx/i2c.c)
|
|
|
|
sets the cpu up as a master node and so its address should
|
|
|
|
therefore be cleared to 0 (See, eg, MPC823e User's Manual
|
|
|
|
p.16-473). So, set CFG_I2C_SLAVE to 0.
|
|
|
|
|
|
|
|
That's all that's required for CONFIG_HARD_I2C.
|
|
|
|
|
|
|
|
If you use the software i2c interface (CONFIG_SOFT_I2C)
|
|
|
|
then the following macros need to be defined (examples are
|
|
|
|
from include/configs/lwmon.h):
|
|
|
|
|
|
|
|
I2C_INIT
|
|
|
|
|
|
|
|
(Optional). Any commands necessary to enable the I2C
|
|
|
|
controller or configure ports.
|
|
|
|
|
|
|
|
eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL)
|
|
|
|
|
|
|
|
I2C_PORT
|
|
|
|
|
|
|
|
(Only for MPC8260 CPU). The I/O port to use (the code
|
|
|
|
assumes both bits are on the same port). Valid values
|
|
|
|
are 0..3 for ports A..D.
|
|
|
|
|
|
|
|
I2C_ACTIVE
|
|
|
|
|
|
|
|
The code necessary to make the I2C data line active
|
|
|
|
(driven). If the data line is open collector, this
|
|
|
|
define can be null.
|
|
|
|
|
|
|
|
eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA)
|
|
|
|
|
|
|
|
I2C_TRISTATE
|
|
|
|
|
|
|
|
The code necessary to make the I2C data line tri-stated
|
|
|
|
(inactive). If the data line is open collector, this
|
|
|
|
define can be null.
|
|
|
|
|
|
|
|
eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
|
|
|
|
|
|
|
|
I2C_READ
|
|
|
|
|
|
|
|
Code that returns TRUE if the I2C data line is high,
|
|
|
|
FALSE if it is low.
|
|
|
|
|
|
|
|
eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
|
|
|
|
|
|
|
|
I2C_SDA(bit)
|
|
|
|
|
|
|
|
If <bit> is TRUE, sets the I2C data line high. If it
|
|
|
|
is FALSE, it clears it (low).
|
|
|
|
|
|
|
|
eg: #define I2C_SDA(bit) \
|
|
|
|
if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \
|
|
|
|
else immr->im_cpm.cp_pbdat &= ~PB_SDA
|
|
|
|
|
|
|
|
I2C_SCL(bit)
|
|
|
|
|
|
|
|
If <bit> is TRUE, sets the I2C clock line high. If it
|
|
|
|
is FALSE, it clears it (low).
|
|
|
|
|
|
|
|
eg: #define I2C_SCL(bit) \
|
|
|
|
if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \
|
|
|
|
else immr->im_cpm.cp_pbdat &= ~PB_SCL
|
|
|
|
|
|
|
|
I2C_DELAY
|
|
|
|
|
|
|
|
This delay is invoked four times per clock cycle so this
|
|
|
|
controls the rate of data transfer. The data rate thus
|
|
|
|
is 1 / (I2C_DELAY * 4). Often defined to be something
|
|
|
|
like:
|
|
|
|
|
|
|
|
#define I2C_DELAY udelay(2)
|
|
|
|
|
|
|
|
CFG_I2C_INIT_BOARD
|
|
|
|
|
|
|
|
When a board is reset during an i2c bus transfer
|
|
|
|
chips might think that the current transfer is still
|
|
|
|
in progress. On some boards it is possible to access
|
|
|
|
the i2c SCLK line directly, either by using the
|
|
|
|
processor pin as a GPIO or by having a second pin
|
|
|
|
connected to the bus. If this option is defined a
|
|
|
|
custom i2c_init_board() routine in boards/xxx/board.c
|
|
|
|
is run early in the boot sequence.
|
|
|
|
|
|
|
|
CONFIG_I2CFAST (PPC405GP|PPC405EP only)
|
|
|
|
|
|
|
|
This option enables configuration of bi_iic_fast[] flags
|
|
|
|
in u-boot bd_info structure based on u-boot environment
|
|
|
|
variable "i2cfast". (see also i2cfast)
|
|
|
|
|
|
|
|
CONFIG_I2C_MULTI_BUS
|
|
|
|
|
|
|
|
This option allows the use of multiple I2C buses, each of which
|
|
|
|
must have a controller. At any point in time, only one bus is
|
|
|
|
active. To switch to a different bus, use the 'i2c dev' command.
|
|
|
|
Note that bus numbering is zero-based.
|
|
|
|
|
|
|
|
CFG_I2C_NOPROBES
|
|
|
|
|
|
|
|
This option specifies a list of I2C devices that will be skipped
|
|
|
|
when the 'i2c probe' command is issued (or 'iprobe' using the legacy
|
|
|
|
command). If CONFIG_I2C_MULTI_BUS is set, specify a list of bus-device
|
|
|
|
pairs. Otherwise, specify a 1D array of device addresses
|
|
|
|
|
|
|
|
e.g.
|
|
|
|
#undef CONFIG_I2C_MULTI_BUS
|
|
|
|
#define CFG_I2C_NOPROBES {0x50,0x68}
|
|
|
|
|
|
|
|
will skip addresses 0x50 and 0x68 on a board with one I2C bus
|
|
|
|
|
|
|
|
#define CONFIG_I2C_MULTI_BUS
|
|
|
|
#define CFG_I2C_MULTI_NOPROBES {{0,0x50},{0,0x68},{1,0x54}}
|
|
|
|
|
|
|
|
will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
|
|
|
|
|
|
|
|
CFG_SPD_BUS_NUM
|
|
|
|
|
|
|
|
If defined, then this indicates the I2C bus number for DDR SPD.
|
|
|
|
If not defined, then U-Boot assumes that SPD is on I2C bus 0.
|
|
|
|
|
|
|
|
CFG_RTC_BUS_NUM
|
|
|
|
|
|
|
|
If defined, then this indicates the I2C bus number for the RTC.
|
|
|
|
If not defined, then U-Boot assumes that RTC is on I2C bus 0.
|
|
|
|
|
|
|
|
CFG_DTT_BUS_NUM
|
|
|
|
|
|
|
|
If defined, then this indicates the I2C bus number for the DTT.
|
|
|
|
If not defined, then U-Boot assumes that DTT is on I2C bus 0.
|
|
|
|
|
|
|
|
CONFIG_FSL_I2C
|
|
|
|
|
|
|
|
Define this option if you want to use Freescale's I2C driver in
|
|
|
|
drivers/i2c/fsl_i2c.c.
|
|
|
|
|
|
|
|
|
|
|
|
- SPI Support: CONFIG_SPI
|
|
|
|
|
|
|
|
Enables SPI driver (so far only tested with
|
|
|
|
SPI EEPROM, also an instance works with Crystal A/D and
|
|
|
|
D/As on the SACSng board)
|
|
|
|
|
|
|
|
CONFIG_SPI_X
|
|
|
|
|
|
|
|
Enables extended (16-bit) SPI EEPROM addressing.
|
|
|
|
(symmetrical to CONFIG_I2C_X)
|
|
|
|
|
|
|
|
CONFIG_SOFT_SPI
|
|
|
|
|
|
|
|
Enables a software (bit-bang) SPI driver rather than
|
|
|
|
using hardware support. This is a general purpose
|
|
|
|
driver that only requires three general I/O port pins
|
|
|
|
(two outputs, one input) to function. If this is
|
|
|
|
defined, the board configuration must define several
|
|
|
|
SPI configuration items (port pins to use, etc). For
|
|
|
|
an example, see include/configs/sacsng.h.
|
|
|
|
|
|
|
|
CONFIG_HARD_SPI
|
|
|
|
|
|
|
|
Enables a hardware SPI driver for general-purpose reads
|
|
|
|
and writes. As with CONFIG_SOFT_SPI, the board configuration
|
|
|
|
must define a list of chip-select function pointers.
|
|
|
|
Currently supported on some MPC8xxx processors. For an
|
|
|
|
example, see include/configs/mpc8349emds.h.
|
|
|
|
|
|
|
|
- FPGA Support: CONFIG_FPGA
|
|
|
|
|
|
|
|
Enables FPGA subsystem.
|
|
|
|
|
|
|
|
CONFIG_FPGA_<vendor>
|
|
|
|
|
|
|
|
Enables support for specific chip vendors.
|
|
|
|
(ALTERA, XILINX)
|
|
|
|
|
|
|
|
CONFIG_FPGA_<family>
|
|
|
|
|
|
|
|
Enables support for FPGA family.
|
|
|
|
(SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
|
|
|
|
|
|
|
|
CONFIG_FPGA_COUNT
|
|
|
|
|
|
|
|
Specify the number of FPGA devices to support.
|
|
|
|
|
|
|
|
CFG_FPGA_PROG_FEEDBACK
|
|
|
|
|
|
|
|
Enable printing of hash marks during FPGA configuration.
|
|
|
|
|
|
|
|
CFG_FPGA_CHECK_BUSY
|
|
|
|
|
|
|
|
Enable checks on FPGA configuration interface busy
|
|
|
|
status by the configuration function. This option
|
|
|
|
will require a board or device specific function to
|
|
|
|
be written.
|
|
|
|
|
|
|
|
CONFIG_FPGA_DELAY
|
|
|
|
|
|
|
|
If defined, a function that provides delays in the FPGA
|
|
|
|
configuration driver.
|
|
|
|
|
|
|
|
CFG_FPGA_CHECK_CTRLC
|
|
|
|
Allow Control-C to interrupt FPGA configuration
|
|
|
|
|
|
|
|
CFG_FPGA_CHECK_ERROR
|
|
|
|
|
|
|
|
Check for configuration errors during FPGA bitfile
|
|
|
|
loading. For example, abort during Virtex II
|
|
|
|
configuration if the INIT_B line goes low (which
|
|
|
|
indicated a CRC error).
|
|
|
|
|
|
|
|
CFG_FPGA_WAIT_INIT
|
|
|
|
|
|
|
|
Maximum time to wait for the INIT_B line to deassert
|
|
|
|
after PROB_B has been deasserted during a Virtex II
|
|
|
|
FPGA configuration sequence. The default time is 500
|
|
|
|
mS.
|
|
|
|
|
|
|
|
CFG_FPGA_WAIT_BUSY
|
|
|
|
|
|
|
|
Maximum time to wait for BUSY to deassert during
|
|
|
|
Virtex II FPGA configuration. The default is 5 mS.
|
|
|
|
|
|
|
|
CFG_FPGA_WAIT_CONFIG
|
|
|
|
|
|
|
|
Time to wait after FPGA configuration. The default is
|
|
|
|
200 mS.
|
|
|
|
|
|
|
|
- Configuration Management:
|
|
|
|
CONFIG_IDENT_STRING
|
|
|
|
|
|
|
|
If defined, this string will be added to the U-Boot
|
|
|
|
version information (U_BOOT_VERSION)
|
|
|
|
|
|
|
|
- Vendor Parameter Protection:
|
|
|
|
|
|
|
|
U-Boot considers the values of the environment
|
|
|
|
variables "serial#" (Board Serial Number) and
|
|
|
|
"ethaddr" (Ethernet Address) to be parameters that
|
|
|
|
are set once by the board vendor / manufacturer, and
|
|
|
|
protects these variables from casual modification by
|
|
|
|
the user. Once set, these variables are read-only,
|
|
|
|
and write or delete attempts are rejected. You can
|
|
|
|
change this behviour:
|
|
|
|
|
|
|
|
If CONFIG_ENV_OVERWRITE is #defined in your config
|
|
|
|
file, the write protection for vendor parameters is
|
|
|
|
completely disabled. Anybody can change or delete
|
|
|
|
these parameters.
|
|
|
|
|
|
|
|
Alternatively, if you #define _both_ CONFIG_ETHADDR
|
|
|
|
_and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
|
|
|
|
ethernet address is installed in the environment,
|
|
|
|
which can be changed exactly ONCE by the user. [The
|
|
|
|
serial# is unaffected by this, i. e. it remains
|
|
|
|
read-only.]
|
|
|
|
|
|
|
|
- Protected RAM:
|
|
|
|
CONFIG_PRAM
|
|
|
|
|
|
|
|
Define this variable to enable the reservation of
|
|
|
|
"protected RAM", i. e. RAM which is not overwritten
|
|
|
|
by U-Boot. Define CONFIG_PRAM to hold the number of
|
|
|
|
kB you want to reserve for pRAM. You can overwrite
|
|
|
|
this default value by defining an environment
|
|
|
|
variable "pram" to the number of kB you want to
|
|
|
|
reserve. Note that the board info structure will
|
|
|
|
still show the full amount of RAM. If pRAM is
|
|
|
|
reserved, a new environment variable "mem" will
|
|
|
|
automatically be defined to hold the amount of
|
|
|
|
remaining RAM in a form that can be passed as boot
|
|
|
|
argument to Linux, for instance like that:
|
|
|
|
|
|
|
|
setenv bootargs ... mem=\${mem}
|
|
|
|
saveenv
|
|
|
|
|
|
|
|
This way you can tell Linux not to use this memory,
|
|
|
|
either, which results in a memory region that will
|
|
|
|
not be affected by reboots.
|
|
|
|
|
|
|
|
*WARNING* If your board configuration uses automatic
|
|
|
|
detection of the RAM size, you must make sure that
|
|
|
|
this memory test is non-destructive. So far, the
|
|
|
|
following board configurations are known to be
|
|
|
|
"pRAM-clean":
|
|
|
|
|
|
|
|
ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL,
|
|
|
|
HERMES, IP860, RPXlite, LWMON, LANTEC,
|
|
|
|
PCU_E, FLAGADM, TQM8260
|
|
|
|
|
|
|
|
- Error Recovery:
|
|
|
|
CONFIG_PANIC_HANG
|
|
|
|
|
|
|
|
Define this variable to stop the system in case of a
|
|
|
|
fatal error, so that you have to reset it manually.
|
|
|
|
This is probably NOT a good idea for an embedded
|
|
|
|
system where you want to system to reboot
|
|
|
|
automatically as fast as possible, but it may be
|
|
|
|
useful during development since you can try to debug
|
|
|
|
the conditions that lead to the situation.
|
|
|
|
|
|
|
|
CONFIG_NET_RETRY_COUNT
|
|
|
|
|
|
|
|
This variable defines the number of retries for
|
|
|
|
network operations like ARP, RARP, TFTP, or BOOTP
|
|
|
|
before giving up the operation. If not defined, a
|
|
|
|
default value of 5 is used.
|
|
|
|
|
|
|
|
- Command Interpreter:
|
|
|
|
CONFIG_AUTO_COMPLETE
|
|
|
|
|
|
|
|
Enable auto completion of commands using TAB.
|
|
|
|
|
|
|
|
Note that this feature has NOT been implemented yet
|
|
|
|
for the "hush" shell.
|
|
|
|
|
|
|
|
|
|
|
|
CFG_HUSH_PARSER
|
|
|
|
|
|
|
|
Define this variable to enable the "hush" shell (from
|
|
|
|
Busybox) as command line interpreter, thus enabling
|
|
|
|
powerful command line syntax like
|
|
|
|
if...then...else...fi conditionals or `&&' and '||'
|
|
|
|
constructs ("shell scripts").
|
|
|
|
|
|
|
|
If undefined, you get the old, much simpler behaviour
|
|
|
|
with a somewhat smaller memory footprint.
|
|
|
|
|
|
|
|
|
|
|
|
CFG_PROMPT_HUSH_PS2
|
|
|
|
|
|
|
|
This defines the secondary prompt string, which is
|
|
|
|
printed when the command interpreter needs more input
|
|
|
|
to complete a command. Usually "> ".
|
|
|
|
|
|
|
|
Note:
|
|
|
|
|
|
|
|
In the current implementation, the local variables
|
|
|
|
space and global environment variables space are
|
|
|
|
separated. Local variables are those you define by
|
|
|
|
simply typing `name=value'. To access a local
|
|
|
|
variable later on, you have write `$name' or
|
|
|
|
`${name}'; to execute the contents of a variable
|
|
|
|
directly type `$name' at the command prompt.
|
|
|
|
|
|
|
|
Global environment variables are those you use
|
|
|
|
setenv/printenv to work with. To run a command stored
|
|
|
|
in such a variable, you need to use the run command,
|
|
|
|
and you must not use the '$' sign to access them.
|
|
|
|
|
|
|
|
To store commands and special characters in a
|
|
|
|
variable, please use double quotation marks
|
|
|
|
surrounding the whole text of the variable, instead
|
|
|
|
of the backslashes before semicolons and special
|
|
|
|
symbols.
|
|
|
|
|
|
|
|
- Commandline Editing and History:
|
|
|
|
CONFIG_CMDLINE_EDITING
|
|
|
|
|
|
|
|
Enable editiong and History functions for interactive
|
|
|
|
commandline input operations
|
|
|
|
|
|
|
|
- Default Environment:
|
|
|
|
CONFIG_EXTRA_ENV_SETTINGS
|
|
|
|
|
|
|
|
Define this to contain any number of null terminated
|
|
|
|
strings (variable = value pairs) that will be part of
|
|
|
|
the default environment compiled into the boot image.
|
|
|
|
|
|
|
|
For example, place something like this in your
|
|
|
|
board's config file:
|
|
|
|
|
|
|
|
#define CONFIG_EXTRA_ENV_SETTINGS \
|
|
|
|
"myvar1=value1\0" \
|
|
|
|
"myvar2=value2\0"
|
|
|
|
|
|
|
|
Warning: This method is based on knowledge about the
|
|
|
|
internal format how the environment is stored by the
|
|
|
|
U-Boot code. This is NOT an official, exported
|
|
|
|
interface! Although it is unlikely that this format
|
|
|
|
will change soon, there is no guarantee either.
|
|
|
|
You better know what you are doing here.
|
|
|
|
|
|
|
|
Note: overly (ab)use of the default environment is
|
|
|
|
discouraged. Make sure to check other ways to preset
|
|
|
|
the environment like the autoscript function or the
|
|
|
|
boot command first.
|
|
|
|
|
|
|
|
- DataFlash Support:
|
|
|
|
CONFIG_HAS_DATAFLASH
|
|
|
|
|
|
|
|
Defining this option enables DataFlash features and
|
|
|
|
allows to read/write in Dataflash via the standard
|
|
|
|
commands cp, md...
|
|
|
|
|
|
|
|
- SystemACE Support:
|
|
|
|
CONFIG_SYSTEMACE
|
|
|
|
|
|
|
|
Adding this option adds support for Xilinx SystemACE
|
|
|
|
chips attached via some sort of local bus. The address
|
|
|
|
of the chip must alsh be defined in the
|
|
|
|
CFG_SYSTEMACE_BASE macro. For example:
|
|
|
|
|
|
|
|
#define CONFIG_SYSTEMACE
|
|
|
|
#define CFG_SYSTEMACE_BASE 0xf0000000
|
|
|
|
|
|
|
|
When SystemACE support is added, the "ace" device type
|
|
|
|
becomes available to the fat commands, i.e. fatls.
|
|
|
|
|
|
|
|
- TFTP Fixed UDP Port:
|
|
|
|
CONFIG_TFTP_PORT
|
|
|
|
|
|
|
|
If this is defined, the environment variable tftpsrcp
|
|
|
|
is used to supply the TFTP UDP source port value.
|
|
|
|
If tftpsrcp isn't defined, the normal pseudo-random port
|
|
|
|
number generator is used.
|
|
|
|
|
|
|
|
Also, the environment variable tftpdstp is used to supply
|
|
|
|
the TFTP UDP destination port value. If tftpdstp isn't
|
|
|
|
defined, the normal port 69 is used.
|
|
|
|
|
|
|
|
The purpose for tftpsrcp is to allow a TFTP server to
|
|
|
|
blindly start the TFTP transfer using the pre-configured
|
|
|
|
target IP address and UDP port. This has the effect of
|
|
|
|
"punching through" the (Windows XP) firewall, allowing
|
|
|
|
the remainder of the TFTP transfer to proceed normally.
|
|
|
|
A better solution is to properly configure the firewall,
|
|
|
|
but sometimes that is not allowed.
|
|
|
|
|
|
|
|
- Show boot progress:
|
|
|
|
CONFIG_SHOW_BOOT_PROGRESS
|
|
|
|
|
|
|
|
Defining this option allows to add some board-
|
|
|
|
specific code (calling a user-provided function
|
|
|
|
"show_boot_progress(int)") that enables you to show
|
|
|
|
the system's boot progress on some display (for
|
|
|
|
example, some LED's) on your board. At the moment,
|
|
|
|
the following checkpoints are implemented:
|
|
|
|
|
|
|
|
Legacy uImage format:
|
|
|
|
|
|
|
|
Arg Where When
|
|
|
|
1 common/cmd_bootm.c before attempting to boot an image
|
|
|
|
-1 common/cmd_bootm.c Image header has bad magic number
|
|
|
|
2 common/cmd_bootm.c Image header has correct magic number
|
|
|
|
-2 common/cmd_bootm.c Image header has bad checksum
|
|
|
|
3 common/cmd_bootm.c Image header has correct checksum
|
|
|
|
-3 common/cmd_bootm.c Image data has bad checksum
|
|
|
|
4 common/cmd_bootm.c Image data has correct checksum
|
|
|
|
-4 common/cmd_bootm.c Image is for unsupported architecture
|
|
|
|
5 common/cmd_bootm.c Architecture check OK
|
|
|
|
-5 common/cmd_bootm.c Wrong Image Type (not kernel, multi)
|
|
|
|
6 common/cmd_bootm.c Image Type check OK
|
|
|
|
-6 common/cmd_bootm.c gunzip uncompression error
|
|
|
|
-7 common/cmd_bootm.c Unimplemented compression type
|
|
|
|
7 common/cmd_bootm.c Uncompression OK
|
|
|
|
8 common/cmd_bootm.c No uncompress/copy overwrite error
|
|
|
|
-9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX)
|
|
|
|
|
|
|
|
9 common/image.c Start initial ramdisk verification
|
|
|
|
-10 common/image.c Ramdisk header has bad magic number
|
|
|
|
-11 common/image.c Ramdisk header has bad checksum
|
|
|
|
10 common/image.c Ramdisk header is OK
|
|
|
|
-12 common/image.c Ramdisk data has bad checksum
|
|
|
|
11 common/image.c Ramdisk data has correct checksum
|
|
|
|
12 common/image.c Ramdisk verification complete, start loading
|
|
|
|
-13 common/image.c Wrong Image Type (not PPC Linux Ramdisk)
|
|
|
|
13 common/image.c Start multifile image verification
|
|
|
|
14 common/image.c No initial ramdisk, no multifile, continue.
|
|
|
|
|
|
|
|
15 lib_<arch>/bootm.c All preparation done, transferring control to OS
|
|
|
|
|
|
|
|
-30 lib_ppc/board.c Fatal error, hang the system
|
|
|
|
-31 post/post.c POST test failed, detected by post_output_backlog()
|
|
|
|
-32 post/post.c POST test failed, detected by post_run_single()
|
|
|
|
|
|
|
|
34 common/cmd_doc.c before loading a Image from a DOC device
|
|
|
|
-35 common/cmd_doc.c Bad usage of "doc" command
|
|
|
|
35 common/cmd_doc.c correct usage of "doc" command
|
|
|
|
-36 common/cmd_doc.c No boot device
|
|
|
|
36 common/cmd_doc.c correct boot device
|
|
|
|
-37 common/cmd_doc.c Unknown Chip ID on boot device
|
|
|
|
37 common/cmd_doc.c correct chip ID found, device available
|
|
|
|
-38 common/cmd_doc.c Read Error on boot device
|
|
|
|
38 common/cmd_doc.c reading Image header from DOC device OK
|
|
|
|
-39 common/cmd_doc.c Image header has bad magic number
|
|
|
|
39 common/cmd_doc.c Image header has correct magic number
|
|
|
|
-40 common/cmd_doc.c Error reading Image from DOC device
|
|
|
|
40 common/cmd_doc.c Image header has correct magic number
|
|
|
|
41 common/cmd_ide.c before loading a Image from a IDE device
|
|
|
|
-42 common/cmd_ide.c Bad usage of "ide" command
|
|
|
|
42 common/cmd_ide.c correct usage of "ide" command
|
|
|
|
-43 common/cmd_ide.c No boot device
|
|
|
|
43 common/cmd_ide.c boot device found
|
|
|
|
-44 common/cmd_ide.c Device not available
|
|
|
|
44 common/cmd_ide.c Device available
|
|
|
|
-45 common/cmd_ide.c wrong partition selected
|
|
|
|
45 common/cmd_ide.c partition selected
|
|
|
|
-46 common/cmd_ide.c Unknown partition table
|
|
|
|
46 common/cmd_ide.c valid partition table found
|
|
|
|
-47 common/cmd_ide.c Invalid partition type
|
|
|
|
47 common/cmd_ide.c correct partition type
|
|
|
|
-48 common/cmd_ide.c Error reading Image Header on boot device
|
|
|
|
48 common/cmd_ide.c reading Image Header from IDE device OK
|
|
|
|
-49 common/cmd_ide.c Image header has bad magic number
|
|
|
|
49 common/cmd_ide.c Image header has correct magic number
|
|
|
|
-50 common/cmd_ide.c Image header has bad checksum
|
|
|
|
50 common/cmd_ide.c Image header has correct checksum
|
|
|
|
-51 common/cmd_ide.c Error reading Image from IDE device
|
|
|
|
51 common/cmd_ide.c reading Image from IDE device OK
|
|
|
|
52 common/cmd_nand.c before loading a Image from a NAND device
|
|
|
|
-53 common/cmd_nand.c Bad usage of "nand" command
|
|
|
|
53 common/cmd_nand.c correct usage of "nand" command
|
|
|
|
-54 common/cmd_nand.c No boot device
|
|
|
|
54 common/cmd_nand.c boot device found
|
|
|
|
-55 common/cmd_nand.c Unknown Chip ID on boot device
|
|
|
|
55 common/cmd_nand.c correct chip ID found, device available
|
|
|
|
-56 common/cmd_nand.c Error reading Image Header on boot device
|
|
|
|
56 common/cmd_nand.c reading Image Header from NAND device OK
|
|
|
|
-57 common/cmd_nand.c Image header has bad magic number
|
|
|
|
57 common/cmd_nand.c Image header has correct magic number
|
|
|
|
-58 common/cmd_nand.c Error reading Image from NAND device
|
|
|
|
58 common/cmd_nand.c reading Image from NAND device OK
|
|
|
|
|
|
|
|
-60 common/env_common.c Environment has a bad CRC, using default
|
|
|
|
|
|
|
|
64 net/eth.c starting with Ethernetconfiguration.
|
|
|
|
-64 net/eth.c no Ethernet found.
|
|
|
|
65 net/eth.c Ethernet found.
|
|
|
|
|
|
|
|
-80 common/cmd_net.c usage wrong
|
|
|
|
80 common/cmd_net.c before calling NetLoop()
|
|
|
|
-81 common/cmd_net.c some error in NetLoop() occured
|
|
|
|
81 common/cmd_net.c NetLoop() back without error
|
|
|
|
-82 common/cmd_net.c size == 0 (File with size 0 loaded)
|
|
|
|
82 common/cmd_net.c trying automatic boot
|
|
|
|
83 common/cmd_net.c running autoscript
|
|
|
|
-83 common/cmd_net.c some error in automatic boot or autoscript
|
|
|
|
84 common/cmd_net.c end without errors
|
|
|
|
|
|
|
|
FIT uImage format:
|
|
|
|
|
|
|
|
Arg Where When
|
|
|
|
100 common/cmd_bootm.c Kernel FIT Image has correct format
|
|
|
|
-100 common/cmd_bootm.c Kernel FIT Image has incorrect format
|
|
|
|
101 common/cmd_bootm.c No Kernel subimage unit name, using configuration
|
|
|
|
-101 common/cmd_bootm.c Can't get configuration for kernel subimage
|
|
|
|
102 common/cmd_bootm.c Kernel unit name specified
|
|
|
|
-103 common/cmd_bootm.c Can't get kernel subimage node offset
|
|
|
|
103 common/cmd_bootm.c Found configuration node
|
|
|
|
104 common/cmd_bootm.c Got kernel subimage node offset
|
|
|
|
-104 common/cmd_bootm.c Kernel subimage hash verification failed
|
|
|
|
105 common/cmd_bootm.c Kernel subimage hash verification OK
|
|
|
|
-105 common/cmd_bootm.c Kernel subimage is for unsupported architecture
|
|
|
|
106 common/cmd_bootm.c Architecture check OK
|
|
|
|
-106 common/cmd_bootm.c Kernel subimage has wrong typea
|
|
|
|
107 common/cmd_bootm.c Kernel subimge type OK
|
|
|
|
-107 common/cmd_bootm.c Can't get kernel subimage data/size
|
|
|
|
108 common/cmd_bootm.c Got kernel subimage data/size
|
|
|
|
-108 common/cmd_bootm.c Wrong image type (not legacy, FIT)
|
|
|
|
-109 common/cmd_bootm.c Can't get kernel subimage type
|
|
|
|
-110 common/cmd_bootm.c Can't get kernel subimage comp
|
|
|
|
-111 common/cmd_bootm.c Can't get kernel subimage os
|
|
|
|
-112 common/cmd_bootm.c Can't get kernel subimage load address
|
|
|
|
-113 common/cmd_bootm.c Image uncompress/copy overwrite error
|
|
|
|
|
|
|
|
120 common/image.c Start initial ramdisk verification
|
|
|
|
-120 common/image.c Ramdisk FIT image has incorrect format
|
|
|
|
121 common/image.c Ramdisk FIT image has correct format
|
|
|
|
122 common/image.c No Ramdisk subimage unit name, using configuration
|
|
|
|
-122 common/image.c Can't get configuration for ramdisk subimage
|
|
|
|
123 common/image.c Ramdisk unit name specified
|
|
|
|
-124 common/image.c Can't get ramdisk subimage node offset
|
|
|
|
125 common/image.c Got ramdisk subimage node offset
|
|
|
|
-125 common/image.c Ramdisk subimage hash verification failed
|
|
|
|
126 common/image.c Ramdisk subimage hash verification OK
|
|
|
|
-126 common/image.c Ramdisk subimage for unsupported architecture
|
|
|
|
127 common/image.c Architecture check OK
|
|
|
|
-127 common/image.c Can't get ramdisk subimage data/size
|
|
|
|
128 common/image.c Got ramdisk subimage data/size
|
|
|
|
129 common/image.c Can't get ramdisk load address
|
|
|
|
-129 common/image.c Got ramdisk load address
|
|
|
|
|
|
|
|
-130 common/cmd_doc.c Icorrect FIT image format
|
|
|
|
131 common/cmd_doc.c FIT image format OK
|
|
|
|
|
|
|
|
-140 common/cmd_ide.c Icorrect FIT image format
|
|
|
|
141 common/cmd_ide.c FIT image format OK
|
|
|
|
|
|
|
|
-150 common/cmd_nand.c Icorrect FIT image format
|
|
|
|
151 common/cmd_nand.c FIT image format OK
|
|
|
|
|
|
|
|
|
|
|
|
Modem Support:
|
|
|
|
--------------
|
|
|
|
|
|
|
|
[so far only for SMDK2400 and TRAB boards]
|
|
|
|
|
|
|
|
- Modem support endable:
|
|
|
|
CONFIG_MODEM_SUPPORT
|
|
|
|
|
|
|
|
- RTS/CTS Flow control enable:
|
|
|
|
CONFIG_HWFLOW
|
|
|
|
|
|
|
|
- Modem debug support:
|
|
|
|
CONFIG_MODEM_SUPPORT_DEBUG
|
|
|
|
|
|
|
|
Enables debugging stuff (char screen[1024], dbg())
|
|
|
|
for modem support. Useful only with BDI2000.
|
|
|
|
|
|
|
|
- Interrupt support (PPC):
|
|
|
|
|
|
|
|
There are common interrupt_init() and timer_interrupt()
|
|
|
|
for all PPC archs. interrupt_init() calls interrupt_init_cpu()
|
|
|
|
for cpu specific initialization. interrupt_init_cpu()
|
|
|
|
should set decrementer_count to appropriate value. If
|
|
|
|
cpu resets decrementer automatically after interrupt
|
|
|
|
(ppc4xx) it should set decrementer_count to zero.
|
|
|
|
timer_interrupt() calls timer_interrupt_cpu() for cpu
|
|
|
|
specific handling. If board has watchdog / status_led
|
|
|
|
/ other_activity_monitor it works automatically from
|
|
|
|
general timer_interrupt().
|
|
|
|
|
|
|
|
- General:
|
|
|
|
|
|
|
|
In the target system modem support is enabled when a
|
|
|
|
specific key (key combination) is pressed during
|
|
|
|
power-on. Otherwise U-Boot will boot normally
|
|
|
|
(autoboot). The key_pressed() fuction is called from
|
|
|
|
board_init(). Currently key_pressed() is a dummy
|
|
|
|
function, returning 1 and thus enabling modem
|
|
|
|
initialization.
|
|
|
|
|
|
|
|
If there are no modem init strings in the
|
|
|
|
environment, U-Boot proceed to autoboot; the
|
|
|
|
previous output (banner, info printfs) will be
|
|
|
|
supressed, though.
|
|
|
|
|
|
|
|
See also: doc/README.Modem
|
|
|
|
|
|
|
|
|
|
|
|
Configuration Settings:
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
- CFG_LONGHELP: Defined when you want long help messages included;
|
|
|
|
undefine this when you're short of memory.
|
|
|
|
|
|
|
|
- CFG_PROMPT: This is what U-Boot prints on the console to
|
|
|
|
prompt for user input.
|
|
|
|
|
|
|
|
- CFG_CBSIZE: Buffer size for input from the Console
|
|
|
|
|
|
|
|
- CFG_PBSIZE: Buffer size for Console output
|
|
|
|
|
|
|
|
- CFG_MAXARGS: max. Number of arguments accepted for monitor commands
|
|
|
|
|
|
|
|
- CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to
|
|
|
|
the application (usually a Linux kernel) when it is
|
|
|
|
booted
|
|
|
|
|
|
|
|
- CFG_BAUDRATE_TABLE:
|
|
|
|
List of legal baudrate settings for this board.
|
|
|
|
|
|
|
|
- CFG_CONSOLE_INFO_QUIET
|
|
|
|
Suppress display of console information at boot.
|
|
|
|
|
|
|
|
- CFG_CONSOLE_IS_IN_ENV
|
|
|
|
If the board specific function
|
|
|
|
extern int overwrite_console (void);
|
|
|
|
returns 1, the stdin, stderr and stdout are switched to the
|
|
|
|
serial port, else the settings in the environment are used.
|
|
|
|
|
|
|
|
- CFG_CONSOLE_OVERWRITE_ROUTINE
|
|
|
|
Enable the call to overwrite_console().
|
|
|
|
|
|
|
|
- CFG_CONSOLE_ENV_OVERWRITE
|
|
|
|
Enable overwrite of previous console environment settings.
|
|
|
|
|
|
|
|
- CFG_MEMTEST_START, CFG_MEMTEST_END:
|
|
|
|
Begin and End addresses of the area used by the
|
|
|
|
simple memory test.
|
|
|
|
|
|
|
|
- CFG_ALT_MEMTEST:
|
|
|
|
Enable an alternate, more extensive memory test.
|
|
|
|
|
|
|
|
- CFG_MEMTEST_SCRATCH:
|
|
|
|
Scratch address used by the alternate memory test
|
|
|
|
You only need to set this if address zero isn't writeable
|
|
|
|
|
ppc: Add CFG_MEM_TOP_HIDE option to hide memory area that doesn't get "touched"
If CFG_MEM_TOP_HIDE is defined in the board config header, this specified
memory area will get subtracted from the top (end) of ram and won't get
"touched" at all by U-Boot. By fixing up gd->ram_size the Linux kernel
should gets passed the now "corrected" memory size and won't touch it
either. This should work for arch/ppc and arch/powerpc. Only Linux board
ports in arch/powerpc with bootwrapper support, which recalculate the
memory size from the SDRAM controller setup, will have to get fixed
in Linux additionally.
This patch enables this config option on some PPC440EPx boards as a workaround
for the CHIP 11 errata. Here the description from the AMCC documentation:
CHIP_11: End of memory range area restricted access.
Category: 3
Overview:
The 440EPx DDR controller does not acknowledge any
transaction which is determined to be crossing over the
end-of-memory-range boundary, even if the starting address is
within valid memory space. Any such transaction from any PLB4
master will result in a PLB time-out on PLB4 bus.
Impact:
In case of such misaligned bursts, PLB4 masters will not
retrieve any data at all, just the available data up to the
end of memory, especially the 440 CPU. For example, if a CPU
instruction required an operand located in memory within the
last 7 words of memory, the DCU master would burst read 8
words to update the data cache and cross over the
end-of-memory-range boundary. Such a DCU read would not be
answered by the DDR controller, resulting in a PLB4 time-out
and ultimately in a Machine Check interrupt. The data would
be inaccessible to the CPU.
Workaround:
Forbid any application to access the last 256 bytes of DDR
memory. For example, make your operating system believe that
the last 256 bytes of DDR memory are absent. AMCC has a patch
that does this, available for Linux.
This patch sets CFG_MEM_TOP_HIDE for the following 440EPx boards:
lwmon5, korat, sequoia
The other remaining 440EPx board were intentionally not included
since it is not clear to me, if they use the end of ram for some
other purpose. This is unclear, since these boards have CONFIG_PRAM
defined and even comments like this:
PMC440.h:
/* esd expects pram at end of physical memory.
* So no logbuffer at the moment.
*/
It is strongly recommended to not use the last 256 bytes on those
boards too. Patches from the board maintainers are welcome.
Signed-off-by: Stefan Roese <sr@denx.de>
17 years ago
|
|
|
- CFG_MEM_TOP_HIDE (PPC only):
|
|
|
|
If CFG_MEM_TOP_HIDE is defined in the board config header,
|
|
|
|
this specified memory area will get subtracted from the top
|
|
|
|
(end) of ram and won't get "touched" at all by U-Boot. By
|
|
|
|
fixing up gd->ram_size the Linux kernel should gets passed
|
|
|
|
the now "corrected" memory size and won't touch it either.
|
|
|
|
This should work for arch/ppc and arch/powerpc. Only Linux
|
|
|
|
board ports in arch/powerpc with bootwrapper support that
|
ppc: Add CFG_MEM_TOP_HIDE option to hide memory area that doesn't get "touched"
If CFG_MEM_TOP_HIDE is defined in the board config header, this specified
memory area will get subtracted from the top (end) of ram and won't get
"touched" at all by U-Boot. By fixing up gd->ram_size the Linux kernel
should gets passed the now "corrected" memory size and won't touch it
either. This should work for arch/ppc and arch/powerpc. Only Linux board
ports in arch/powerpc with bootwrapper support, which recalculate the
memory size from the SDRAM controller setup, will have to get fixed
in Linux additionally.
This patch enables this config option on some PPC440EPx boards as a workaround
for the CHIP 11 errata. Here the description from the AMCC documentation:
CHIP_11: End of memory range area restricted access.
Category: 3
Overview:
The 440EPx DDR controller does not acknowledge any
transaction which is determined to be crossing over the
end-of-memory-range boundary, even if the starting address is
within valid memory space. Any such transaction from any PLB4
master will result in a PLB time-out on PLB4 bus.
Impact:
In case of such misaligned bursts, PLB4 masters will not
retrieve any data at all, just the available data up to the
end of memory, especially the 440 CPU. For example, if a CPU
instruction required an operand located in memory within the
last 7 words of memory, the DCU master would burst read 8
words to update the data cache and cross over the
end-of-memory-range boundary. Such a DCU read would not be
answered by the DDR controller, resulting in a PLB4 time-out
and ultimately in a Machine Check interrupt. The data would
be inaccessible to the CPU.
Workaround:
Forbid any application to access the last 256 bytes of DDR
memory. For example, make your operating system believe that
the last 256 bytes of DDR memory are absent. AMCC has a patch
that does this, available for Linux.
This patch sets CFG_MEM_TOP_HIDE for the following 440EPx boards:
lwmon5, korat, sequoia
The other remaining 440EPx board were intentionally not included
since it is not clear to me, if they use the end of ram for some
other purpose. This is unclear, since these boards have CONFIG_PRAM
defined and even comments like this:
PMC440.h:
/* esd expects pram at end of physical memory.
* So no logbuffer at the moment.
*/
It is strongly recommended to not use the last 256 bytes on those
boards too. Patches from the board maintainers are welcome.
Signed-off-by: Stefan Roese <sr@denx.de>
17 years ago
|
|
|
recalculate the memory size from the SDRAM controller setup
|
|
|
|
will have to get fixed in Linux additionally.
|
ppc: Add CFG_MEM_TOP_HIDE option to hide memory area that doesn't get "touched"
If CFG_MEM_TOP_HIDE is defined in the board config header, this specified
memory area will get subtracted from the top (end) of ram and won't get
"touched" at all by U-Boot. By fixing up gd->ram_size the Linux kernel
should gets passed the now "corrected" memory size and won't touch it
either. This should work for arch/ppc and arch/powerpc. Only Linux board
ports in arch/powerpc with bootwrapper support, which recalculate the
memory size from the SDRAM controller setup, will have to get fixed
in Linux additionally.
This patch enables this config option on some PPC440EPx boards as a workaround
for the CHIP 11 errata. Here the description from the AMCC documentation:
CHIP_11: End of memory range area restricted access.
Category: 3
Overview:
The 440EPx DDR controller does not acknowledge any
transaction which is determined to be crossing over the
end-of-memory-range boundary, even if the starting address is
within valid memory space. Any such transaction from any PLB4
master will result in a PLB time-out on PLB4 bus.
Impact:
In case of such misaligned bursts, PLB4 masters will not
retrieve any data at all, just the available data up to the
end of memory, especially the 440 CPU. For example, if a CPU
instruction required an operand located in memory within the
last 7 words of memory, the DCU master would burst read 8
words to update the data cache and cross over the
end-of-memory-range boundary. Such a DCU read would not be
answered by the DDR controller, resulting in a PLB4 time-out
and ultimately in a Machine Check interrupt. The data would
be inaccessible to the CPU.
Workaround:
Forbid any application to access the last 256 bytes of DDR
memory. For example, make your operating system believe that
the last 256 bytes of DDR memory are absent. AMCC has a patch
that does this, available for Linux.
This patch sets CFG_MEM_TOP_HIDE for the following 440EPx boards:
lwmon5, korat, sequoia
The other remaining 440EPx board were intentionally not included
since it is not clear to me, if they use the end of ram for some
other purpose. This is unclear, since these boards have CONFIG_PRAM
defined and even comments like this:
PMC440.h:
/* esd expects pram at end of physical memory.
* So no logbuffer at the moment.
*/
It is strongly recommended to not use the last 256 bytes on those
boards too. Patches from the board maintainers are welcome.
Signed-off-by: Stefan Roese <sr@denx.de>
17 years ago
|
|
|
|
|
|
|
This option can be used as a workaround for the 440EPx/GRx
|
|
|
|
CHIP 11 errata where the last 256 bytes in SDRAM shouldn't
|
|
|
|
be touched.
|
|
|
|
|
|
|
|
WARNING: Please make sure that this value is a multiple of
|
|
|
|
the Linux page size (normally 4k). If this is not the case,
|
|
|
|
then the end address of the Linux memory will be located at a
|
|
|
|
non page size aligned address and this could cause major
|
|
|
|
problems.
|
|
|
|
|
|
|
|
- CFG_TFTP_LOADADDR:
|
|
|
|
Default load address for network file downloads
|
|
|
|
|
|
|
|
- CFG_LOADS_BAUD_CHANGE:
|
|
|
|
Enable temporary baudrate change while serial download
|
|
|
|
|
|
|
|
- CFG_SDRAM_BASE:
|
|
|
|
Physical start address of SDRAM. _Must_ be 0 here.
|
|
|
|
|
|
|
|
- CFG_MBIO_BASE:
|
|
|
|
Physical start address of Motherboard I/O (if using a
|
|
|
|
Cogent motherboard)
|
|
|
|
|
|
|
|
- CFG_FLASH_BASE:
|
|
|
|
Physical start address of Flash memory.
|
|
|
|
|
|
|
|
- CFG_MONITOR_BASE:
|
|
|
|
Physical start address of boot monitor code (set by
|
|
|
|
make config files to be same as the text base address
|
|
|
|
(TEXT_BASE) used when linking) - same as
|
|
|
|
CFG_FLASH_BASE when booting from flash.
|
|
|
|
|
|
|
|
- CFG_MONITOR_LEN:
|
|
|
|
Size of memory reserved for monitor code, used to
|
|
|
|
determine _at_compile_time_ (!) if the environment is
|
|
|
|
embedded within the U-Boot image, or in a separate
|
|
|
|
flash sector.
|
|
|
|
|
|
|
|
- CFG_MALLOC_LEN:
|
|
|
|
Size of DRAM reserved for malloc() use.
|
|
|
|
|
|
|
|
- CFG_BOOTM_LEN:
|
|
|
|
Normally compressed uImages are limited to an
|
|
|
|
uncompressed size of 8 MBytes. If this is not enough,
|
|
|
|
you can define CFG_BOOTM_LEN in your board config file
|
|
|
|
to adjust this setting to your needs.
|
|
|
|
|
|
|
|
- CFG_BOOTMAPSZ:
|
|
|
|
Maximum size of memory mapped by the startup code of
|
|
|
|
the Linux kernel; all data that must be processed by
|
|
|
|
the Linux kernel (bd_info, boot arguments, FDT blob if
|
|
|
|
used) must be put below this limit, unless "bootm_low"
|
|
|
|
enviroment variable is defined and non-zero. In such case
|
|
|
|
all data for the Linux kernel must be between "bootm_low"
|
|
|
|
and "bootm_low" + CFG_BOOTMAPSZ.
|
|
|
|
|
|
|
|
- CFG_MAX_FLASH_BANKS:
|
|
|
|
Max number of Flash memory banks
|
|
|
|
|
|
|
|
- CFG_MAX_FLASH_SECT:
|
|
|
|
Max number of sectors on a Flash chip
|
|
|
|
|
|
|
|
- CFG_FLASH_ERASE_TOUT:
|
|
|
|
Timeout for Flash erase operations (in ms)
|
|
|
|
|
|
|
|
- CFG_FLASH_WRITE_TOUT:
|
|
|
|
Timeout for Flash write operations (in ms)
|
|
|
|
|
|
|
|
- CFG_FLASH_LOCK_TOUT
|
|
|
|
Timeout for Flash set sector lock bit operation (in ms)
|
|
|
|
|
|
|
|
- CFG_FLASH_UNLOCK_TOUT
|
|
|
|
Timeout for Flash clear lock bits operation (in ms)
|
|
|
|
|
|
|
|
- CFG_FLASH_PROTECTION
|
|
|
|
If defined, hardware flash sectors protection is used
|
|
|
|
instead of U-Boot software protection.
|
|
|
|
|
|
|
|
- CFG_DIRECT_FLASH_TFTP:
|
|
|
|
|
|
|
|
Enable TFTP transfers directly to flash memory;
|
|
|
|
without this option such a download has to be
|
|
|
|
performed in two steps: (1) download to RAM, and (2)
|
|
|
|
copy from RAM to flash.
|
|
|
|
|
|
|
|
The two-step approach is usually more reliable, since
|
|
|
|
you can check if the download worked before you erase
|
|
|
|
the flash, but in some situations (when sytem RAM is
|
|
|
|
too limited to allow for a tempory copy of the
|
|
|
|
downloaded image) this option may be very useful.
|
|
|
|
|
|
|
|
- CFG_FLASH_CFI:
|
|
|
|
Define if the flash driver uses extra elements in the
|
|
|
|
common flash structure for storing flash geometry.
|
|
|
|
|
|
|
|
- CFG_FLASH_CFI_DRIVER
|
|
|
|
This option also enables the building of the cfi_flash driver
|
|
|
|
in the drivers directory
|
|
|
|
|
|
|
|
- CFG_FLASH_USE_BUFFER_WRITE
|
|
|
|
Use buffered writes to flash.
|
|
|
|
|
|
|
|
- CONFIG_FLASH_SPANSION_S29WS_N
|
|
|
|
s29ws-n MirrorBit flash has non-standard addresses for buffered
|
|
|
|
write commands.
|
|
|
|
|
|
|
|
- CFG_FLASH_QUIET_TEST
|
|
|
|
If this option is defined, the common CFI flash doesn't
|
|
|
|
print it's warning upon not recognized FLASH banks. This
|
|
|
|
is useful, if some of the configured banks are only
|
|
|
|
optionally available.
|
|
|
|
|
|
|
|
- CONFIG_FLASH_SHOW_PROGRESS
|
|
|
|
If defined (must be an integer), print out countdown
|
|
|
|
digits and dots. Recommended value: 45 (9..1) for 80
|
|
|
|
column displays, 15 (3..1) for 40 column displays.
|
|
|
|
|
|
|
|
- CFG_RX_ETH_BUFFER:
|
|
|
|
Defines the number of ethernet receive buffers. On some
|
|
|
|
ethernet controllers it is recommended to set this value
|
|
|
|
to 8 or even higher (EEPRO100 or 405 EMAC), since all
|
|
|
|
buffers can be full shortly after enabling the interface
|
|
|
|
on high ethernet traffic.
|
|
|
|
Defaults to 4 if not defined.
|
|
|
|
|
|
|
|
The following definitions that deal with the placement and management
|
|
|
|
of environment data (variable area); in general, we support the
|
|
|
|
following configurations:
|
|
|
|
|
|
|
|
- CFG_ENV_IS_IN_FLASH:
|
|
|
|
|
|
|
|
Define this if the environment is in flash memory.
|
|
|
|
|
|
|
|
a) The environment occupies one whole flash sector, which is
|
|
|
|
"embedded" in the text segment with the U-Boot code. This
|
|
|
|
happens usually with "bottom boot sector" or "top boot
|
|
|
|
sector" type flash chips, which have several smaller
|
|
|
|
sectors at the start or the end. For instance, such a
|
|
|
|
layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
|
|
|
|
such a case you would place the environment in one of the
|
|
|
|
4 kB sectors - with U-Boot code before and after it. With
|
|
|
|
"top boot sector" type flash chips, you would put the
|
|
|
|
environment in one of the last sectors, leaving a gap
|
|
|
|
between U-Boot and the environment.
|
|
|
|
|
|
|
|
- CFG_ENV_OFFSET:
|
|
|
|
|
|
|
|
Offset of environment data (variable area) to the
|
|
|
|
beginning of flash memory; for instance, with bottom boot
|
|
|
|
type flash chips the second sector can be used: the offset
|
|
|
|
for this sector is given here.
|
|
|
|
|
|
|
|
CFG_ENV_OFFSET is used relative to CFG_FLASH_BASE.
|
|
|
|
|
|
|
|
- CFG_ENV_ADDR:
|
|
|
|
|
|
|
|
This is just another way to specify the start address of
|
|
|
|
the flash sector containing the environment (instead of
|
|
|
|
CFG_ENV_OFFSET).
|
|
|
|
|
|
|
|
- CFG_ENV_SECT_SIZE:
|
|
|
|
|
|
|
|
Size of the sector containing the environment.
|
|
|
|
|
|
|
|
|
|
|
|
b) Sometimes flash chips have few, equal sized, BIG sectors.
|
|
|
|
In such a case you don't want to spend a whole sector for
|
|
|
|
the environment.
|
|
|
|
|
|
|
|
- CFG_ENV_SIZE:
|
|
|
|
|
|
|
|
If you use this in combination with CFG_ENV_IS_IN_FLASH
|
|
|
|
and CFG_ENV_SECT_SIZE, you can specify to use only a part
|
|
|
|
of this flash sector for the environment. This saves
|
|
|
|
memory for the RAM copy of the environment.
|
|
|
|
|
|
|
|
It may also save flash memory if you decide to use this
|
|
|
|
when your environment is "embedded" within U-Boot code,
|
|
|
|
since then the remainder of the flash sector could be used
|
|
|
|
for U-Boot code. It should be pointed out that this is
|
|
|
|
STRONGLY DISCOURAGED from a robustness point of view:
|
|
|
|
updating the environment in flash makes it always
|
|
|
|
necessary to erase the WHOLE sector. If something goes
|
|
|
|
wrong before the contents has been restored from a copy in
|
|
|
|
RAM, your target system will be dead.
|
|
|
|
|
|
|
|
- CFG_ENV_ADDR_REDUND
|
|
|
|
CFG_ENV_SIZE_REDUND
|
|
|
|
|
|
|
|
These settings describe a second storage area used to hold
|
|
|
|
a redundand copy of the environment data, so that there is
|
|
|
|
a valid backup copy in case there is a power failure during
|
|
|
|
a "saveenv" operation.
|
|
|
|
|
|
|
|
BE CAREFUL! Any changes to the flash layout, and some changes to the
|
|
|
|
source code will make it necessary to adapt <board>/u-boot.lds*
|
|
|
|
accordingly!
|
|
|
|
|
|
|
|
|
|
|
|
- CFG_ENV_IS_IN_NVRAM:
|
|
|
|
|
|
|
|
Define this if you have some non-volatile memory device
|
|
|
|
(NVRAM, battery buffered SRAM) which you want to use for the
|
|
|
|
environment.
|
|
|
|
|
|
|
|
- CFG_ENV_ADDR:
|
|
|
|
- CFG_ENV_SIZE:
|
|
|
|
|
|
|
|
These two #defines are used to determin the memory area you
|
|
|
|
want to use for environment. It is assumed that this memory
|
|
|
|
can just be read and written to, without any special
|
|
|
|
provision.
|
|
|
|
|
|
|
|
BE CAREFUL! The first access to the environment happens quite early
|
|
|
|
in U-Boot initalization (when we try to get the setting of for the
|
|
|
|
console baudrate). You *MUST* have mappend your NVRAM area then, or
|
|
|
|
U-Boot will hang.
|
|
|
|
|
|
|
|
Please note that even with NVRAM we still use a copy of the
|
|
|
|
environment in RAM: we could work on NVRAM directly, but we want to
|
|
|
|
keep settings there always unmodified except somebody uses "saveenv"
|
|
|
|
to save the current settings.
|
|
|
|
|
|
|
|
|
|
|
|
- CFG_ENV_IS_IN_EEPROM:
|
|
|
|
|
|
|
|
Use this if you have an EEPROM or similar serial access
|
|
|
|
device and a driver for it.
|
|
|
|
|
|
|
|
- CFG_ENV_OFFSET:
|
|
|
|
- CFG_ENV_SIZE:
|
|
|
|
|
|
|
|
These two #defines specify the offset and size of the
|
|
|
|
environment area within the total memory of your EEPROM.
|
|
|
|
|
|
|
|
- CFG_I2C_EEPROM_ADDR:
|
|
|
|
If defined, specified the chip address of the EEPROM device.
|
|
|
|
The default address is zero.
|
|
|
|
|
|
|
|
- CFG_EEPROM_PAGE_WRITE_BITS:
|
|
|
|
If defined, the number of bits used to address bytes in a
|
|
|
|
single page in the EEPROM device. A 64 byte page, for example
|
|
|
|
would require six bits.
|
|
|
|
|
|
|
|
- CFG_EEPROM_PAGE_WRITE_DELAY_MS:
|
|
|
|
If defined, the number of milliseconds to delay between
|
|
|
|
page writes. The default is zero milliseconds.
|
|
|
|
|
|
|
|
- CFG_I2C_EEPROM_ADDR_LEN:
|
|
|
|
The length in bytes of the EEPROM memory array address. Note
|
|
|
|
that this is NOT the chip address length!
|
|
|
|
|
|
|
|
- CFG_I2C_EEPROM_ADDR_OVERFLOW:
|
|
|
|
EEPROM chips that implement "address overflow" are ones
|
|
|
|
like Catalyst 24WC04/08/16 which has 9/10/11 bits of
|
|
|
|
address and the extra bits end up in the "chip address" bit
|
|
|
|
slots. This makes a 24WC08 (1Kbyte) chip look like four 256
|
|
|
|
byte chips.
|
|
|
|
|
|
|
|
Note that we consider the length of the address field to
|
|
|
|
still be one byte because the extra address bits are hidden
|
|
|
|
in the chip address.
|
|
|
|
|
|
|
|
- CFG_EEPROM_SIZE:
|
|
|
|
The size in bytes of the EEPROM device.
|
|
|
|
|
|
|
|
|
|
|
|
- CFG_ENV_IS_IN_DATAFLASH:
|
|
|
|
|
|
|
|
Define this if you have a DataFlash memory device which you
|
|
|
|
want to use for the environment.
|
|
|
|
|
|
|
|
- CFG_ENV_OFFSET:
|
|
|
|
- CFG_ENV_ADDR:
|
|
|
|
- CFG_ENV_SIZE:
|
|
|
|
|
|
|
|
These three #defines specify the offset and size of the
|
|
|
|
environment area within the total memory of your DataFlash placed
|
|
|
|
at the specified address.
|
|
|
|
|
|
|
|
- CFG_ENV_IS_IN_NAND:
|
|
|
|
|
|
|
|
Define this if you have a NAND device which you want to use
|
|
|
|
for the environment.
|
|
|
|
|
|
|
|
- CFG_ENV_OFFSET:
|
|
|
|
- CFG_ENV_SIZE:
|
|
|
|
|
|
|
|
These two #defines specify the offset and size of the environment
|
|
|
|
area within the first NAND device.
|
|
|
|
|
|
|
|
- CFG_ENV_OFFSET_REDUND
|
|
|
|
|
|
|
|
This setting describes a second storage area of CFG_ENV_SIZE
|
|
|
|
size used to hold a redundant copy of the environment data,
|
|
|
|
so that there is a valid backup copy in case there is a
|
|
|
|
power failure during a "saveenv" operation.
|
|
|
|
|
|
|
|
Note: CFG_ENV_OFFSET and CFG_ENV_OFFSET_REDUND must be aligned
|
|
|
|
to a block boundary, and CFG_ENV_SIZE must be a multiple of
|
|
|
|
the NAND devices block size.
|
|
|
|
|
|
|
|
- CFG_SPI_INIT_OFFSET
|
|
|
|
|
|
|
|
Defines offset to the initial SPI buffer area in DPRAM. The
|
|
|
|
area is used at an early stage (ROM part) if the environment
|
|
|
|
is configured to reside in the SPI EEPROM: We need a 520 byte
|
|
|
|
scratch DPRAM area. It is used between the two initialization
|
|
|
|
calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
|
|
|
|
to be a good choice since it makes it far enough from the
|
|
|
|
start of the data area as well as from the stack pointer.
|
|
|
|
|
|
|
|
Please note that the environment is read-only until the monitor
|
|
|
|
has been relocated to RAM and a RAM copy of the environment has been
|
|
|
|
created; also, when using EEPROM you will have to use getenv_r()
|
|
|
|
until then to read environment variables.
|
|
|
|
|
|
|
|
The environment is protected by a CRC32 checksum. Before the monitor
|
|
|
|
is relocated into RAM, as a result of a bad CRC you will be working
|
|
|
|
with the compiled-in default environment - *silently*!!! [This is
|
|
|
|
necessary, because the first environment variable we need is the
|
|
|
|
"baudrate" setting for the console - if we have a bad CRC, we don't
|
|
|
|
have any device yet where we could complain.]
|
|
|
|
|
|
|
|
Note: once the monitor has been relocated, then it will complain if
|
|
|
|
the default environment is used; a new CRC is computed as soon as you
|
|
|
|
use the "saveenv" command to store a valid environment.
|
|
|
|
|
|
|
|
- CFG_FAULT_ECHO_LINK_DOWN:
|
|
|
|
Echo the inverted Ethernet link state to the fault LED.
|
|
|
|
|
|
|
|
Note: If this option is active, then CFG_FAULT_MII_ADDR
|
|
|
|
also needs to be defined.
|
|
|
|
|
|
|
|
- CFG_FAULT_MII_ADDR:
|
|
|
|
MII address of the PHY to check for the Ethernet link state.
|
|
|
|
|
|
|
|
- CFG_64BIT_VSPRINTF:
|
|
|
|
Makes vsprintf (and all *printf functions) support printing
|
|
|
|
of 64bit values by using the L quantifier
|
|
|
|
|
|
|
|
- CFG_64BIT_STRTOUL:
|
|
|
|
Adds simple_strtoull that returns a 64bit value
|
|
|
|
|
|
|
|
Low Level (hardware related) configuration options:
|
|
|
|
---------------------------------------------------
|
|
|
|
|
|
|
|
- CFG_CACHELINE_SIZE:
|
|
|
|
Cache Line Size of the CPU.
|
|
|
|
|
|
|
|
- CFG_DEFAULT_IMMR:
|
|
|
|
Default address of the IMMR after system reset.
|
|
|
|
|
|
|
|
Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
|
|
|
|
and RPXsuper) to be able to adjust the position of
|
|
|
|
the IMMR register after a reset.
|
|
|
|
|
|
|
|
- Floppy Disk Support:
|
|
|
|
CFG_FDC_DRIVE_NUMBER
|
|
|
|
|
|
|
|
the default drive number (default value 0)
|
|
|
|
|
|
|
|
CFG_ISA_IO_STRIDE
|
|
|
|
|
|
|
|
defines the spacing between fdc chipset registers
|
|
|
|
(default value 1)
|
|
|
|
|
|
|
|
CFG_ISA_IO_OFFSET
|
|
|
|
|
|
|
|
defines the offset of register from address. It
|
|
|
|
depends on which part of the data bus is connected to
|
|
|
|
the fdc chipset. (default value 0)
|
|
|
|
|
|
|
|
If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
|
|
|
|
CFG_FDC_DRIVE_NUMBER are undefined, they take their
|
|
|
|
default value.
|
|
|
|
|
|
|
|
if CFG_FDC_HW_INIT is defined, then the function
|
|
|
|
fdc_hw_init() is called at the beginning of the FDC
|
|
|
|
setup. fdc_hw_init() must be provided by the board
|
|
|
|
source code. It is used to make hardware dependant
|
|
|
|
initializations.
|
|
|
|
|
|
|
|
- CFG_IMMR: Physical address of the Internal Memory.
|
|
|
|
DO NOT CHANGE unless you know exactly what you're
|
|
|
|
doing! (11-4) [MPC8xx/82xx systems only]
|
|
|
|
|
|
|
|
- CFG_INIT_RAM_ADDR:
|
|
|
|
|
|
|
|
Start address of memory area that can be used for
|
|
|
|
initial data and stack; please note that this must be
|
|
|
|
writable memory that is working WITHOUT special
|
|
|
|
initialization, i. e. you CANNOT use normal RAM which
|
|
|
|
will become available only after programming the
|
|
|
|
memory controller and running certain initialization
|
|
|
|
sequences.
|
|
|
|
|
|
|
|
U-Boot uses the following memory types:
|
|
|
|
- MPC8xx and MPC8260: IMMR (internal memory of the CPU)
|
|
|
|
- MPC824X: data cache
|
|
|
|
- PPC4xx: data cache
|
|
|
|
|
|
|
|
- CFG_GBL_DATA_OFFSET:
|
|
|
|
|
|
|
|
Offset of the initial data structure in the memory
|
|
|
|
area defined by CFG_INIT_RAM_ADDR. Usually
|
|
|
|
CFG_GBL_DATA_OFFSET is chosen such that the initial
|
|
|
|
data is located at the end of the available space
|
|
|
|
(sometimes written as (CFG_INIT_RAM_END -
|
|
|
|
CFG_INIT_DATA_SIZE), and the initial stack is just
|
|
|
|
below that area (growing from (CFG_INIT_RAM_ADDR +
|
|
|
|
CFG_GBL_DATA_OFFSET) downward.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
On the MPC824X (or other systems that use the data
|
|
|
|
cache for initial memory) the address chosen for
|
|
|
|
CFG_INIT_RAM_ADDR is basically arbitrary - it must
|
|
|
|
point to an otherwise UNUSED address space between
|
|
|
|
the top of RAM and the start of the PCI space.
|
|
|
|
|
|
|
|
- CFG_SIUMCR: SIU Module Configuration (11-6)
|
|
|
|
|
|
|
|
- CFG_SYPCR: System Protection Control (11-9)
|
|
|
|
|
|
|
|
- CFG_TBSCR: Time Base Status and Control (11-26)
|
|
|
|
|
|
|
|
- CFG_PISCR: Periodic Interrupt Status and Control (11-31)
|
|
|
|
|
|
|
|
- CFG_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30)
|
|
|
|
|
|
|
|
- CFG_SCCR: System Clock and reset Control Register (15-27)
|
|
|
|
|
|
|
|
- CFG_OR_TIMING_SDRAM:
|
|
|
|
SDRAM timing
|
|
|
|
|
|
|
|
- CFG_MAMR_PTA:
|
|
|
|
periodic timer for refresh
|
|
|
|
|
|
|
|
- CFG_DER: Debug Event Register (37-47)
|
|
|
|
|
|
|
|
- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CFG_REMAP_OR_AM,
|
|
|
|
CFG_PRELIM_OR_AM, CFG_OR_TIMING_FLASH, CFG_OR0_REMAP,
|
|
|
|
CFG_OR0_PRELIM, CFG_BR0_PRELIM, CFG_OR1_REMAP, CFG_OR1_PRELIM,
|
|
|
|
CFG_BR1_PRELIM:
|
|
|
|
Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
|
|
|
|
|
|
|
|
- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
|
|
|
|
CFG_OR_TIMING_SDRAM, CFG_OR2_PRELIM, CFG_BR2_PRELIM,
|
|
|
|
CFG_OR3_PRELIM, CFG_BR3_PRELIM:
|
|
|
|
Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
|
|
|
|
|
|
|
|
- CFG_MAMR_PTA, CFG_MPTPR_2BK_4K, CFG_MPTPR_1BK_4K, CFG_MPTPR_2BK_8K,
|
|
|
|
CFG_MPTPR_1BK_8K, CFG_MAMR_8COL, CFG_MAMR_9COL:
|
|
|
|
Machine Mode Register and Memory Periodic Timer
|
|
|
|
Prescaler definitions (SDRAM timing)
|
|
|
|
|
|
|
|
- CFG_I2C_UCODE_PATCH, CFG_I2C_DPMEM_OFFSET [0x1FC0]:
|
|
|
|
enable I2C microcode relocation patch (MPC8xx);
|
|
|
|
define relocation offset in DPRAM [DSP2]
|
|
|
|
|
|
|
|
- CFG_SMC_UCODE_PATCH, CFG_SMC_DPMEM_OFFSET [0x1FC0]:
|
|
|
|
enable SMC microcode relocation patch (MPC8xx);
|
|
|
|
define relocation offset in DPRAM [SMC1]
|
|
|
|
|
|
|
|
- CFG_SPI_UCODE_PATCH, CFG_SPI_DPMEM_OFFSET [0x1FC0]:
|
|
|
|
enable SPI microcode relocation patch (MPC8xx);
|
|
|
|
define relocation offset in DPRAM [SCC4]
|
|
|
|
|
|
|
|
- CFG_USE_OSCCLK:
|
|
|
|
Use OSCM clock mode on MBX8xx board. Be careful,
|
|
|
|
wrong setting might damage your board. Read
|
|
|
|
doc/README.MBX before setting this variable!
|
|
|
|
|
|
|
|
- CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
|
|
|
|
Offset of the bootmode word in DPRAM used by post
|
|
|
|
(Power On Self Tests). This definition overrides
|
|
|
|
#define'd default value in commproc.h resp.
|
|
|
|
cpm_8260.h.
|
|
|
|
|
|
|
|
- CFG_PCI_SLV_MEM_LOCAL, CFG_PCI_SLV_MEM_BUS, CFG_PICMR0_MASK_ATTRIB,
|
|
|
|
CFG_PCI_MSTR0_LOCAL, CFG_PCIMSK0_MASK, CFG_PCI_MSTR1_LOCAL,
|
|
|
|
CFG_PCIMSK1_MASK, CFG_PCI_MSTR_MEM_LOCAL, CFG_PCI_MSTR_MEM_BUS,
|
|
|
|
CFG_CPU_PCI_MEM_START, CFG_PCI_MSTR_MEM_SIZE, CFG_POCMR0_MASK_ATTRIB,
|
|
|
|
CFG_PCI_MSTR_MEMIO_LOCAL, CFG_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
|
|
|
|
CFG_PCI_MSTR_MEMIO_SIZE, CFG_POCMR1_MASK_ATTRIB, CFG_PCI_MSTR_IO_LOCAL,
|
|
|
|
CFG_PCI_MSTR_IO_BUS, CFG_CPU_PCI_IO_START, CFG_PCI_MSTR_IO_SIZE,
|
|
|
|
CFG_POCMR2_MASK_ATTRIB: (MPC826x only)
|
|
|
|
Overrides the default PCI memory map in cpu/mpc8260/pci.c if set.
|
|
|
|
|
|
|
|
- CONFIG_SPD_EEPROM
|
|
|
|
Get DDR timing information from an I2C EEPROM. Common
|
|
|
|
with pluggable memory modules such as SODIMMs
|
|
|
|
|
|
|
|
SPD_EEPROM_ADDRESS
|
|
|
|
I2C address of the SPD EEPROM
|
|
|
|
|
|
|
|
- CFG_SPD_BUS_NUM
|
|
|
|
If SPD EEPROM is on an I2C bus other than the first
|
|
|
|
one, specify here. Note that the value must resolve
|
|
|
|
to something your driver can deal with.
|
|
|
|
|
|
|
|
- CFG_83XX_DDR_USES_CS0
|
|
|
|
Only for 83xx systems. If specified, then DDR should
|
|
|
|
be configured using CS0 and CS1 instead of CS2 and CS3.
|
|
|
|
|
|
|
|
- CFG_83XX_DDR_USES_CS0
|
|
|
|
Only for 83xx systems. If specified, then DDR should
|
|
|
|
be configured using CS0 and CS1 instead of CS2 and CS3.
|
|
|
|
|
|
|
|
- CONFIG_ETHER_ON_FEC[12]
|
|
|
|
Define to enable FEC[12] on a 8xx series processor.
|
|
|
|
|
|
|
|
- CONFIG_FEC[12]_PHY
|
|
|
|
Define to the hardcoded PHY address which corresponds
|
|
|
|
to the given FEC; i. e.
|
|
|
|
#define CONFIG_FEC1_PHY 4
|
|
|
|
means that the PHY with address 4 is connected to FEC1
|
|
|
|
|
|
|
|
When set to -1, means to probe for first available.
|
|
|
|
|
|
|
|
- CONFIG_FEC[12]_PHY_NORXERR
|
|
|
|
The PHY does not have a RXERR line (RMII only).
|
|
|
|
(so program the FEC to ignore it).
|
|
|
|
|
|
|
|
- CONFIG_RMII
|
|
|
|
Enable RMII mode for all FECs.
|
|
|
|
Note that this is a global option, we can't
|
|
|
|
have one FEC in standard MII mode and another in RMII mode.
|
|
|
|
|
|
|
|
- CONFIG_CRC32_VERIFY
|
|
|
|
Add a verify option to the crc32 command.
|
|
|
|
The syntax is:
|
|
|
|
|
|
|
|
=> crc32 -v <address> <count> <crc32>
|
|
|
|
|
|
|
|
Where address/count indicate a memory area
|
|
|
|
and crc32 is the correct crc32 which the
|
|
|
|
area should have.
|
|
|
|
|
|
|
|
- CONFIG_LOOPW
|
|
|
|
Add the "loopw" memory command. This only takes effect if
|
|
|
|
the memory commands are activated globally (CONFIG_CMD_MEM).
|
|
|
|
|
|
|
|
- CONFIG_MX_CYCLIC
|
|
|
|
Add the "mdc" and "mwc" memory commands. These are cyclic
|
|
|
|
"md/mw" commands.
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
=> mdc.b 10 4 500
|
|
|
|
This command will print 4 bytes (10,11,12,13) each 500 ms.
|
|
|
|
|
|
|
|
=> mwc.l 100 12345678 10
|
|
|
|
This command will write 12345678 to address 100 all 10 ms.
|
|
|
|
|
|
|
|
This only takes effect if the memory commands are activated
|
|
|
|
globally (CONFIG_CMD_MEM).
|
|
|
|
|
|
|
|
- CONFIG_SKIP_LOWLEVEL_INIT
|
|
|
|
- CONFIG_SKIP_RELOCATE_UBOOT
|
|
|
|
|
|
|
|
[ARM only] If these variables are defined, then
|
|
|
|
certain low level initializations (like setting up
|
|
|
|
the memory controller) are omitted and/or U-Boot does
|
|
|
|
not relocate itself into RAM.
|
|
|
|
Normally these variables MUST NOT be defined. The
|
|
|
|
only exception is when U-Boot is loaded (to RAM) by
|
|
|
|
some other boot loader or by a debugger which
|
|
|
|
performs these intializations itself.
|
|
|
|
|
|
|
|
|
|
|
|
Building the Software:
|
|
|
|
======================
|
|
|
|
|
|
|
|
Building U-Boot has been tested in several native build environments
|
|
|
|
and in many different cross environments. Of course we cannot support
|
|
|
|
all possibly existing versions of cross development tools in all
|
|
|
|
(potentially obsolete) versions. In case of tool chain problems we
|
|
|
|
recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK)
|
|
|
|
which is extensively used to build and test U-Boot.
|
|
|
|
|
|
|
|
If you are not using a native environment, it is assumed that you
|
|
|
|
have GNU cross compiling tools available in your path. In this case,
|
|
|
|
you must set the environment variable CROSS_COMPILE in your shell.
|
|
|
|
Note that no changes to the Makefile or any other source files are
|
|
|
|
necessary. For example using the ELDK on a 4xx CPU, please enter:
|
|
|
|
|
|
|
|
$ CROSS_COMPILE=ppc_4xx-
|
|
|
|
$ export CROSS_COMPILE
|
|
|
|
|
|
|
|
U-Boot is intended to be simple to build. After installing the
|
|
|
|
sources you must configure U-Boot for one specific board type. This
|
|
|
|
is done by typing:
|
|
|
|
|
|
|
|
make NAME_config
|
|
|
|
|
|
|
|
where "NAME_config" is the name of one of the existing configu-
|
|
|
|
rations; see the main Makefile for supported names.
|
|
|
|
|
|
|
|
Note: for some board special configuration names may exist; check if
|
|
|
|
additional information is available from the board vendor; for
|
|
|
|
instance, the TQM823L systems are available without (standard)
|
|
|
|
or with LCD support. You can select such additional "features"
|
|
|
|
when chosing the configuration, i. e.
|
|
|
|
|
|
|
|
make TQM823L_config
|
|
|
|
- will configure for a plain TQM823L, i. e. no LCD support
|
|
|
|
|
|
|
|
make TQM823L_LCD_config
|
|
|
|
- will configure for a TQM823L with U-Boot console on LCD
|
|
|
|
|
|
|
|
etc.
|
|
|
|
|
|
|
|
|
|
|
|
Finally, type "make all", and you should get some working U-Boot
|
|
|
|
images ready for download to / installation on your system:
|
|
|
|
|
|
|
|
- "u-boot.bin" is a raw binary image
|
|
|
|
- "u-boot" is an image in ELF binary format
|
|
|
|
- "u-boot.srec" is in Motorola S-Record format
|
|
|
|
|
|
|
|
By default the build is performed locally and the objects are saved
|
|
|
|
in the source directory. One of the two methods can be used to change
|
|
|
|
this behavior and build U-Boot to some external directory:
|
|
|
|
|
|
|
|
1. Add O= to the make command line invocations:
|
|
|
|
|
|
|
|
make O=/tmp/build distclean
|
|
|
|
make O=/tmp/build NAME_config
|
|
|
|
make O=/tmp/build all
|
|
|
|
|
|
|
|
2. Set environment variable BUILD_DIR to point to the desired location:
|
|
|
|
|
|
|
|
export BUILD_DIR=/tmp/build
|
|
|
|
make distclean
|
|
|
|
make NAME_config
|
|
|
|
make all
|
|
|
|
|
|
|
|
Note that the command line "O=" setting overrides the BUILD_DIR environment
|
|
|
|
variable.
|
|
|
|
|
|
|
|
|
|
|
|
Please be aware that the Makefiles assume you are using GNU make, so
|
|
|
|
for instance on NetBSD you might need to use "gmake" instead of
|
|
|
|
native "make".
|
|
|
|
|
|
|
|
|
|
|
|
If the system board that you have is not listed, then you will need
|
|
|
|
to port U-Boot to your hardware platform. To do this, follow these
|
|
|
|
steps:
|
|
|
|
|
|
|
|
1. Add a new configuration option for your board to the toplevel
|
|
|
|
"Makefile" and to the "MAKEALL" script, using the existing
|
|
|
|
entries as examples. Note that here and at many other places
|
|
|
|
boards and other names are listed in alphabetical sort order. Please
|
|
|
|
keep this order.
|
|
|
|
2. Create a new directory to hold your board specific code. Add any
|
|
|
|
files you need. In your board directory, you will need at least
|
|
|
|
the "Makefile", a "<board>.c", "flash.c" and "u-boot.lds".
|
|
|
|
3. Create a new configuration file "include/configs/<board>.h" for
|
|
|
|
your board
|
|
|
|
3. If you're porting U-Boot to a new CPU, then also create a new
|
|
|
|
directory to hold your CPU specific code. Add any files you need.
|
|
|
|
4. Run "make <board>_config" with your new name.
|
|
|
|
5. Type "make", and you should get a working "u-boot.srec" file
|
|
|
|
to be installed on your target system.
|
|
|
|
6. Debug and solve any problems that might arise.
|
|
|
|
[Of course, this last step is much harder than it sounds.]
|
|
|
|
|
|
|
|
|
|
|
|
Testing of U-Boot Modifications, Ports to New Hardware, etc.:
|
|
|
|
==============================================================
|
|
|
|
|
|
|
|
If you have modified U-Boot sources (for instance added a new board
|
|
|
|
or support for new devices, a new CPU, etc.) you are expected to
|
|
|
|
provide feedback to the other developers. The feedback normally takes
|
|
|
|
the form of a "patch", i. e. a context diff against a certain (latest
|
|
|
|
official or latest in the git repository) version of U-Boot sources.
|
|
|
|
|
|
|
|
But before you submit such a patch, please verify that your modifi-
|
|
|
|
cation did not break existing code. At least make sure that *ALL* of
|
|
|
|
the supported boards compile WITHOUT ANY compiler warnings. To do so,
|
|
|
|
just run the "MAKEALL" script, which will configure and build U-Boot
|
|
|
|
for ALL supported system. Be warned, this will take a while. You can
|
|
|
|
select which (cross) compiler to use by passing a `CROSS_COMPILE'
|
|
|
|
environment variable to the script, i. e. to use the ELDK cross tools
|
|
|
|
you can type
|
|
|
|
|
|
|
|
CROSS_COMPILE=ppc_8xx- MAKEALL
|
|
|
|
|
|
|
|
or to build on a native PowerPC system you can type
|
|
|
|
|
|
|
|
CROSS_COMPILE=' ' MAKEALL
|
|
|
|
|
|
|
|
When using the MAKEALL script, the default behaviour is to build
|
|
|
|
U-Boot in the source directory. This location can be changed by
|
|
|
|
setting the BUILD_DIR environment variable. Also, for each target
|
|
|
|
built, the MAKEALL script saves two log files (<target>.ERR and
|
|
|
|
<target>.MAKEALL) in the <source dir>/LOG directory. This default
|
|
|
|
location can be changed by setting the MAKEALL_LOGDIR environment
|
|
|
|
variable. For example:
|
|
|
|
|
|
|
|
export BUILD_DIR=/tmp/build
|
|
|
|
export MAKEALL_LOGDIR=/tmp/log
|
|
|
|
CROSS_COMPILE=ppc_8xx- MAKEALL
|
|
|
|
|
|
|
|
With the above settings build objects are saved in the /tmp/build,
|
|
|
|
log files are saved in the /tmp/log and the source tree remains clean
|
|
|
|
during the whole build process.
|
|
|
|
|
|
|
|
|
|
|
|
See also "U-Boot Porting Guide" below.
|
|
|
|
|
|
|
|
|
|
|
|
Monitor Commands - Overview:
|
|
|
|
============================
|
|
|
|
|
|
|
|
go - start application at address 'addr'
|
|
|
|
run - run commands in an environment variable
|
|
|
|
bootm - boot application image from memory
|
|
|
|
bootp - boot image via network using BootP/TFTP protocol
|
|
|
|
tftpboot- boot image via network using TFTP protocol
|
|
|
|
and env variables "ipaddr" and "serverip"
|
|
|
|
(and eventually "gatewayip")
|
|
|
|
rarpboot- boot image via network using RARP/TFTP protocol
|
|
|
|
diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
|
|
|
|
loads - load S-Record file over serial line
|
|
|
|
loadb - load binary file over serial line (kermit mode)
|
|
|
|
md - memory display
|
|
|
|
mm - memory modify (auto-incrementing)
|
|
|
|
nm - memory modify (constant address)
|
|
|
|
mw - memory write (fill)
|
|
|
|
cp - memory copy
|
|
|
|
cmp - memory compare
|
|
|
|
crc32 - checksum calculation
|
|
|
|
imd - i2c memory display
|
|
|
|
imm - i2c memory modify (auto-incrementing)
|
|
|
|
inm - i2c memory modify (constant address)
|
|
|
|
imw - i2c memory write (fill)
|
|
|
|
icrc32 - i2c checksum calculation
|
|
|
|
iprobe - probe to discover valid I2C chip addresses
|
|
|
|
iloop - infinite loop on address range
|
|
|
|
isdram - print SDRAM configuration information
|
|
|
|
sspi - SPI utility commands
|
|
|
|
base - print or set address offset
|
|
|
|
printenv- print environment variables
|
|
|
|
setenv - set environment variables
|
|
|
|
saveenv - save environment variables to persistent storage
|
|
|
|
protect - enable or disable FLASH write protection
|
|
|
|
erase - erase FLASH memory
|
|
|
|
flinfo - print FLASH memory information
|
|
|
|
bdinfo - print Board Info structure
|
|
|
|
iminfo - print header information for application image
|
|
|
|
coninfo - print console devices and informations
|
|
|
|
ide - IDE sub-system
|
|
|
|
loop - infinite loop on address range
|
|
|
|
loopw - infinite write loop on address range
|
|
|
|
mtest - simple RAM test
|
|
|
|
icache - enable or disable instruction cache
|
|
|
|
dcache - enable or disable data cache
|
|
|
|
reset - Perform RESET of the CPU
|
|
|
|
echo - echo args to console
|
|
|
|
version - print monitor version
|
|
|
|
help - print online help
|
|
|
|
? - alias for 'help'
|
|
|
|
|
|
|
|
|
|
|
|
Monitor Commands - Detailed Description:
|
|
|
|
========================================
|
|
|
|
|
|
|
|
TODO.
|
|
|
|
|
|
|
|
For now: just type "help <command>".
|
|
|
|
|
|
|
|
|
|
|
|
Environment Variables:
|
|
|
|
======================
|
|
|
|
|
|
|
|
U-Boot supports user configuration using Environment Variables which
|
|
|
|
can be made persistent by saving to Flash memory.
|
|
|
|
|
|
|
|
Environment Variables are set using "setenv", printed using
|
|
|
|
"printenv", and saved to Flash using "saveenv". Using "setenv"
|
|
|
|
without a value can be used to delete a variable from the
|
|
|
|
environment. As long as you don't save the environment you are
|
|
|
|
working with an in-memory copy. In case the Flash area containing the
|
|
|
|
environment is erased by accident, a default environment is provided.
|
|
|
|
|
|
|
|
Some configuration options can be set using Environment Variables:
|
|
|
|
|
|
|
|
baudrate - see CONFIG_BAUDRATE
|
|
|
|
|
|
|
|
bootdelay - see CONFIG_BOOTDELAY
|
|
|
|
|
|
|
|
bootcmd - see CONFIG_BOOTCOMMAND
|
|
|
|
|
|
|
|
bootargs - Boot arguments when booting an RTOS image
|
|
|
|
|
|
|
|
bootfile - Name of the image to load with TFTP
|
|
|
|
|
|
|
|
bootm_low - Memory range available for image processing in the bootm
|
|
|
|
command can be restricted. This variable is given as
|
|
|
|
a hexadecimal number and defines lowest address allowed
|
|
|
|
for use by the bootm command. See also "bootm_size"
|
|
|
|
environment variable. Address defined by "bootm_low" is
|
|
|
|
also the base of the initial memory mapping for the Linux
|
|
|
|
kernel -- see the descripton of CFG_BOOTMAPSZ.
|
|
|
|
|
|
|
|
bootm_size - Memory range available for image processing in the bootm
|
|
|
|
command can be restricted. This variable is given as
|
|
|
|
a hexadecimal number and defines the size of the region
|
|
|
|
allowed for use by the bootm command. See also "bootm_low"
|
|
|
|
environment variable.
|
|
|
|
|
|
|
|
autoload - if set to "no" (any string beginning with 'n'),
|
|
|
|
"bootp" will just load perform a lookup of the
|
|
|
|
configuration from the BOOTP server, but not try to
|
|
|
|
load any image using TFTP
|
|
|
|
|
|
|
|
autoscript - if set to "yes" commands like "loadb", "loady",
|
|
|
|
"bootp", "tftpb", "rarpboot" and "nfs" will attempt
|
|
|
|
to automatically run script images (by internally
|
|
|
|
calling "autoscript").
|
|
|
|
|
|
|
|
autoscript_uname - if script image is in a format (FIT) this
|
|
|
|
variable is used to get script subimage unit name.
|
|
|
|
|
|
|
|
autostart - if set to "yes", an image loaded using the "bootp",
|
|
|
|
"rarpboot", "tftpboot" or "diskboot" commands will
|
|
|
|
be automatically started (by internally calling
|
|
|
|
"bootm")
|
|
|
|
|
|
|
|
If set to "no", a standalone image passed to the
|
|
|
|
"bootm" command will be copied to the load address
|
|
|
|
(and eventually uncompressed), but NOT be started.
|
|
|
|
This can be used to load and uncompress arbitrary
|
|
|
|
data.
|
|
|
|
|
|
|
|
i2cfast - (PPC405GP|PPC405EP only)
|
|
|
|
if set to 'y' configures Linux I2C driver for fast
|
|
|
|
mode (400kHZ). This environment variable is used in
|
|
|
|
initialization code. So, for changes to be effective
|
|
|
|
it must be saved and board must be reset.
|
|
|
|
|
|
|
|
initrd_high - restrict positioning of initrd images:
|
|
|
|
If this variable is not set, initrd images will be
|
|
|
|
copied to the highest possible address in RAM; this
|
|
|
|
is usually what you want since it allows for
|
|
|
|
maximum initrd size. If for some reason you want to
|
|
|
|
make sure that the initrd image is loaded below the
|
|
|
|
CFG_BOOTMAPSZ limit, you can set this environment
|
|
|
|
variable to a value of "no" or "off" or "0".
|
|
|
|
Alternatively, you can set it to a maximum upper
|
|
|
|
address to use (U-Boot will still check that it
|
|
|
|
does not overwrite the U-Boot stack and data).
|
|
|
|
|
|
|
|
For instance, when you have a system with 16 MB
|
|
|
|
RAM, and want to reserve 4 MB from use by Linux,
|
|
|
|
you can do this by adding "mem=12M" to the value of
|
|
|
|
the "bootargs" variable. However, now you must make
|
|
|
|
sure that the initrd image is placed in the first
|
|
|
|
12 MB as well - this can be done with
|
|
|
|
|
|
|
|
setenv initrd_high 00c00000
|
|
|
|
|
|
|
|
If you set initrd_high to 0xFFFFFFFF, this is an
|
|
|
|
indication to U-Boot that all addresses are legal
|
|
|
|
for the Linux kernel, including addresses in flash
|
|
|
|
memory. In this case U-Boot will NOT COPY the
|
|
|
|
ramdisk at all. This may be useful to reduce the
|
|
|
|
boot time on your system, but requires that this
|
|
|
|
feature is supported by your Linux kernel.
|
|
|
|
|
|
|
|
ipaddr - IP address; needed for tftpboot command
|
|
|
|
|
|
|
|
loadaddr - Default load address for commands like "bootp",
|
|
|
|
"rarpboot", "tftpboot", "loadb" or "diskboot"
|
|
|
|
|
|
|
|
loads_echo - see CONFIG_LOADS_ECHO
|
|
|
|
|
|
|
|
serverip - TFTP server IP address; needed for tftpboot command
|
|
|
|
|
|
|
|
bootretry - see CONFIG_BOOT_RETRY_TIME
|
|
|
|
|
|
|
|
bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR
|
|
|
|
|
|
|
|
bootstopkey - see CONFIG_AUTOBOOT_STOP_STR
|
|
|
|
|
|
|
|
ethprime - When CONFIG_NET_MULTI is enabled controls which
|
|
|
|
interface is used first.
|
|
|
|
|
|
|
|
ethact - When CONFIG_NET_MULTI is enabled controls which
|
|
|
|
interface is currently active. For example you
|
|
|
|
can do the following
|
|
|
|
|
|
|
|
=> setenv ethact FEC ETHERNET
|
|
|
|
=> ping 192.168.0.1 # traffic sent on FEC ETHERNET
|
|
|
|
=> setenv ethact SCC ETHERNET
|
|
|
|
=> ping 10.0.0.1 # traffic sent on SCC ETHERNET
|
|
|
|
|
|
|
|
ethrotate - When set to "no" U-Boot does not go through all
|
|
|
|
available network interfaces.
|
|
|
|
It just stays at the currently selected interface.
|
|
|
|
|
|
|
|
netretry - When set to "no" each network operation will
|
|
|
|
either succeed or fail without retrying.
|
|
|
|
When set to "once" the network operation will
|
|
|
|
fail when all the available network interfaces
|
|
|
|
are tried once without success.
|
|
|
|
Useful on scripts which control the retry operation
|
|
|
|
themselves.
|
|
|
|
|
|
|
|
npe_ucode - see CONFIG_IXP4XX_NPE_EXT_UCOD
|
|
|
|
if set load address for the npe microcode
|
|
|
|
|
|
|
|
tftpsrcport - If this is set, the value is used for TFTP's
|
|
|
|
UDP source port.
|
|
|
|
|
|
|
|
tftpdstport - If this is set, the value is used for TFTP's UDP
|
|
|
|
destination port instead of the Well Know Port 69.
|
|
|
|
|
|
|
|
vlan - When set to a value < 4095 the traffic over
|
|
|
|
ethernet is encapsulated/received over 802.1q
|
|
|
|
VLAN tagged frames.
|
|
|
|
|
|
|
|
The following environment variables may be used and automatically
|
|
|
|
updated by the network boot commands ("bootp" and "rarpboot"),
|
|
|
|
depending the information provided by your boot server:
|
|
|
|
|
|
|
|
bootfile - see above
|
|
|
|
dnsip - IP address of your Domain Name Server
|
|
|
|
dnsip2 - IP address of your secondary Domain Name Server
|
|
|
|
gatewayip - IP address of the Gateway (Router) to use
|
|
|
|
hostname - Target hostname
|
|
|
|
ipaddr - see above
|
|
|
|
netmask - Subnet Mask
|
|
|
|
rootpath - Pathname of the root filesystem on the NFS server
|
|
|
|
serverip - see above
|
|
|
|
|
|
|
|
|
|
|
|
There are two special Environment Variables:
|
|
|
|
|
|
|
|
serial# - contains hardware identification information such
|
|
|
|
as type string and/or serial number
|
|
|
|
ethaddr - Ethernet address
|
|
|
|
|
|
|
|
These variables can be set only once (usually during manufacturing of
|
|
|
|
the board). U-Boot refuses to delete or overwrite these variables
|
|
|
|
once they have been set once.
|
|
|
|
|
|
|
|
|
|
|
|
Further special Environment Variables:
|
|
|
|
|
|
|
|
ver - Contains the U-Boot version string as printed
|
|
|
|
with the "version" command. This variable is
|
|
|
|
readonly (see CONFIG_VERSION_VARIABLE).
|
|
|
|
|
|
|
|
|
|
|
|
Please note that changes to some configuration parameters may take
|
|
|
|
only effect after the next boot (yes, that's just like Windoze :-).
|
|
|
|
|
|
|
|
|
|
|
|
Command Line Parsing:
|
|
|
|
=====================
|
|
|
|
|
|
|
|
There are two different command line parsers available with U-Boot:
|
|
|
|
the old "simple" one, and the much more powerful "hush" shell:
|
|
|
|
|
|
|
|
Old, simple command line parser:
|
|
|
|
--------------------------------
|
|
|
|
|
|
|
|
- supports environment variables (through setenv / saveenv commands)
|
|
|
|
- several commands on one line, separated by ';'
|
|
|
|
- variable substitution using "... ${name} ..." syntax
|
|
|
|
- special characters ('$', ';') can be escaped by prefixing with '\',
|
|
|
|
for example:
|
|
|
|
setenv bootcmd bootm \${address}
|
|
|
|
- You can also escape text by enclosing in single apostrophes, for example:
|
|
|
|
setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
|
|
|
|
|
|
|
|
Hush shell:
|
|
|
|
-----------
|
|
|
|
|
|
|
|
- similar to Bourne shell, with control structures like
|
|
|
|
if...then...else...fi, for...do...done; while...do...done,
|
|
|
|
until...do...done, ...
|
|
|
|
- supports environment ("global") variables (through setenv / saveenv
|
|
|
|
commands) and local shell variables (through standard shell syntax
|
|
|
|
"name=value"); only environment variables can be used with "run"
|
|
|
|
command
|
|
|
|
|
|
|
|
General rules:
|
|
|
|
--------------
|
|
|
|
|
|
|
|
(1) If a command line (or an environment variable executed by a "run"
|
|
|
|
command) contains several commands separated by semicolon, and
|
|
|
|
one of these commands fails, then the remaining commands will be
|
|
|
|
executed anyway.
|
|
|
|
|
|
|
|
(2) If you execute several variables with one call to run (i. e.
|
|
|
|
calling run with a list af variables as arguments), any failing
|
|
|
|
command will cause "run" to terminate, i. e. the remaining
|
|
|
|
variables are not executed.
|
|
|
|
|
|
|
|
Note for Redundant Ethernet Interfaces:
|
|
|
|
=======================================
|
|
|
|
|
|
|
|
Some boards come with redundant ethernet interfaces; U-Boot supports
|
|
|
|
such configurations and is capable of automatic selection of a
|
|
|
|
"working" interface when needed. MAC assignment works as follows:
|
|
|
|
|
|
|
|
Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
|
|
|
|
MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
|
|
|
|
"eth1addr" (=>eth1), "eth2addr", ...
|
|
|
|
|
|
|
|
If the network interface stores some valid MAC address (for instance
|
|
|
|
in SROM), this is used as default address if there is NO correspon-
|
|
|
|
ding setting in the environment; if the corresponding environment
|
|
|
|
variable is set, this overrides the settings in the card; that means:
|
|
|
|
|
|
|
|
o If the SROM has a valid MAC address, and there is no address in the
|
|
|
|
environment, the SROM's address is used.
|
|
|
|
|
|
|
|
o If there is no valid address in the SROM, and a definition in the
|
|
|
|
environment exists, then the value from the environment variable is
|
|
|
|
used.
|
|
|
|
|
|
|
|
o If both the SROM and the environment contain a MAC address, and
|
|
|
|
both addresses are the same, this MAC address is used.
|
|
|
|
|
|
|
|
o If both the SROM and the environment contain a MAC address, and the
|
|
|
|
addresses differ, the value from the environment is used and a
|
|
|
|
warning is printed.
|
|
|
|
|
|
|
|
o If neither SROM nor the environment contain a MAC address, an error
|
|
|
|
is raised.
|
|
|
|
|
|
|
|
|
|
|
|
Image Formats:
|
|
|
|
==============
|
|
|
|
|
|
|
|
U-Boot is capable of booting (and performing other auxiliary operations on)
|
|
|
|
images in two formats:
|
|
|
|
|
|
|
|
New uImage format (FIT)
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
Flexible and powerful format based on Flattened Image Tree -- FIT (similar
|
|
|
|
to Flattened Device Tree). It allows the use of images with multiple
|
|
|
|
components (several kernels, ramdisks, etc.), with contents protected by
|
|
|
|
SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
|
|
|
|
|
|
|
|
|
|
|
|
Old uImage format
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
Old image format is based on binary files which can be basically anything,
|
|
|
|
preceded by a special header; see the definitions in include/image.h for
|
|
|
|
details; basically, the header defines the following image properties:
|
|
|
|
|
|
|
|
* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
|
|
|
|
4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
|
|
|
|
LynxOS, pSOS, QNX, RTEMS, ARTOS;
|
|
|
|
Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS).
|
|
|
|
* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
|
|
|
|
IA64, MIPS, NIOS, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
|
|
|
|
Currently supported: ARM, AVR32, Intel x86, MIPS, NIOS, PowerPC).
|
|
|
|
* Compression Type (uncompressed, gzip, bzip2)
|
|
|
|
* Load Address
|
|
|
|
* Entry Point
|
|
|
|
* Image Name
|
|
|
|
* Image Timestamp
|
|
|
|
|
|
|
|
The header is marked by a special Magic Number, and both the header
|
|
|
|
and the data portions of the image are secured against corruption by
|
|
|
|
CRC32 checksums.
|
|
|
|
|
|
|
|
|
|
|
|
Linux Support:
|
|
|
|
==============
|
|
|
|
|
|
|
|
Although U-Boot should support any OS or standalone application
|
|
|
|
easily, the main focus has always been on Linux during the design of
|
|
|
|
U-Boot.
|
|
|
|
|
|
|
|
U-Boot includes many features that so far have been part of some
|
|
|
|
special "boot loader" code within the Linux kernel. Also, any
|
|
|
|
"initrd" images to be used are no longer part of one big Linux image;
|
|
|
|
instead, kernel and "initrd" are separate images. This implementation
|
|
|
|
serves several purposes:
|
|
|
|
|
|
|
|
- the same features can be used for other OS or standalone
|
|
|
|
applications (for instance: using compressed images to reduce the
|
|
|
|
Flash memory footprint)
|
|
|
|
|
|
|
|
- it becomes much easier to port new Linux kernel versions because
|
|
|
|
lots of low-level, hardware dependent stuff are done by U-Boot
|
|
|
|
|
|
|
|
- the same Linux kernel image can now be used with different "initrd"
|
|
|
|
images; of course this also means that different kernel images can
|
|
|
|
be run with the same "initrd". This makes testing easier (you don't
|
|
|
|
have to build a new "zImage.initrd" Linux image when you just
|
|
|
|
change a file in your "initrd"). Also, a field-upgrade of the
|
|
|
|
software is easier now.
|
|
|
|
|
|
|
|
|
|
|
|
Linux HOWTO:
|
|
|
|
============
|
|
|
|
|
|
|
|
Porting Linux to U-Boot based systems:
|
|
|
|
---------------------------------------
|
|
|
|
|
|
|
|
U-Boot cannot save you from doing all the necessary modifications to
|
|
|
|
configure the Linux device drivers for use with your target hardware
|
|
|
|
(no, we don't intend to provide a full virtual machine interface to
|
|
|
|
Linux :-).
|
|
|
|
|
|
|
|
But now you can ignore ALL boot loader code (in arch/ppc/mbxboot).
|
|
|
|
|
|
|
|
Just make sure your machine specific header file (for instance
|
|
|
|
include/asm-ppc/tqm8xx.h) includes the same definition of the Board
|
|
|
|
Information structure as we define in include/u-boot.h, and make
|
|
|
|
sure that your definition of IMAP_ADDR uses the same value as your
|
|
|
|
U-Boot configuration in CFG_IMMR.
|
|
|
|
|
|
|
|
|
|
|
|
Configuring the Linux kernel:
|
|
|
|
-----------------------------
|
|
|
|
|
|
|
|
No specific requirements for U-Boot. Make sure you have some root
|
|
|
|
device (initial ramdisk, NFS) for your target system.
|
|
|
|
|
|
|
|
|
|
|
|
Building a Linux Image:
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
With U-Boot, "normal" build targets like "zImage" or "bzImage" are
|
|
|
|
not used. If you use recent kernel source, a new build target
|
|
|
|
"uImage" will exist which automatically builds an image usable by
|
|
|
|
U-Boot. Most older kernels also have support for a "pImage" target,
|
|
|
|
which was introduced for our predecessor project PPCBoot and uses a
|
|
|
|
100% compatible format.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
make TQM850L_config
|
|
|
|
make oldconfig
|
|
|
|
make dep
|
|
|
|
make uImage
|
|
|
|
|
|
|
|
The "uImage" build target uses a special tool (in 'tools/mkimage') to
|
|
|
|
encapsulate a compressed Linux kernel image with header information,
|
|
|
|
CRC32 checksum etc. for use with U-Boot. This is what we are doing:
|
|
|
|
|
|
|
|
* build a standard "vmlinux" kernel image (in ELF binary format):
|
|
|
|
|
|
|
|
* convert the kernel into a raw binary image:
|
|
|
|
|
|
|
|
${CROSS_COMPILE}-objcopy -O binary \
|
|
|
|
-R .note -R .comment \
|
|
|
|
-S vmlinux linux.bin
|
|
|
|
|
|
|
|
* compress the binary image:
|
|
|
|
|
|
|
|
gzip -9 linux.bin
|
|
|
|
|
|
|
|
* package compressed binary image for U-Boot:
|
|
|
|
|
|
|
|
mkimage -A ppc -O linux -T kernel -C gzip \
|
|
|
|
-a 0 -e 0 -n "Linux Kernel Image" \
|
|
|
|
-d linux.bin.gz uImage
|
|
|
|
|
|
|
|
|
|
|
|
The "mkimage" tool can also be used to create ramdisk images for use
|
|
|
|
with U-Boot, either separated from the Linux kernel image, or
|
|
|
|
combined into one file. "mkimage" encapsulates the images with a 64
|
|
|
|
byte header containing information about target architecture,
|
|
|
|
operating system, image type, compression method, entry points, time
|
|
|
|
stamp, CRC32 checksums, etc.
|
|
|
|
|
|
|
|
"mkimage" can be called in two ways: to verify existing images and
|
|
|
|
print the header information, or to build new images.
|
|
|
|
|
|
|
|
In the first form (with "-l" option) mkimage lists the information
|
|
|
|
contained in the header of an existing U-Boot image; this includes
|
|
|
|
checksum verification:
|
|
|
|
|
|
|
|
tools/mkimage -l image
|
|
|
|
-l ==> list image header information
|
|
|
|
|
|
|
|
The second form (with "-d" option) is used to build a U-Boot image
|
|
|
|
from a "data file" which is used as image payload:
|
|
|
|
|
|
|
|
tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
|
|
|
|
-n name -d data_file image
|
|
|
|
-A ==> set architecture to 'arch'
|
|
|
|
-O ==> set operating system to 'os'
|
|
|
|
-T ==> set image type to 'type'
|
|
|
|
-C ==> set compression type 'comp'
|
|
|
|
-a ==> set load address to 'addr' (hex)
|
|
|
|
-e ==> set entry point to 'ep' (hex)
|
|
|
|
-n ==> set image name to 'name'
|
|
|
|
-d ==> use image data from 'datafile'
|
|
|
|
|
|
|
|
Right now, all Linux kernels for PowerPC systems use the same load
|
|
|
|
address (0x00000000), but the entry point address depends on the
|
|
|
|
kernel version:
|
|
|
|
|
|
|
|
- 2.2.x kernels have the entry point at 0x0000000C,
|
|
|
|
- 2.3.x and later kernels have the entry point at 0x00000000.
|
|
|
|
|
|
|
|
So a typical call to build a U-Boot image would read:
|
|
|
|
|
|
|
|
-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
|
|
|
|
> -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
|
|
|
|
> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz \
|
|
|
|
> examples/uImage.TQM850L
|
|
|
|
Image Name: 2.4.4 kernel for TQM850L
|
|
|
|
Created: Wed Jul 19 02:34:59 2000
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
|
|
|
|
Load Address: 0x00000000
|
|
|
|
Entry Point: 0x00000000
|
|
|
|
|
|
|
|
To verify the contents of the image (or check for corruption):
|
|
|
|
|
|
|
|
-> tools/mkimage -l examples/uImage.TQM850L
|
|
|
|
Image Name: 2.4.4 kernel for TQM850L
|
|
|
|
Created: Wed Jul 19 02:34:59 2000
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
|
|
|
|
Load Address: 0x00000000
|
|
|
|
Entry Point: 0x00000000
|
|
|
|
|
|
|
|
NOTE: for embedded systems where boot time is critical you can trade
|
|
|
|
speed for memory and install an UNCOMPRESSED image instead: this
|
|
|
|
needs more space in Flash, but boots much faster since it does not
|
|
|
|
need to be uncompressed:
|
|
|
|
|
|
|
|
-> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz
|
|
|
|
-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
|
|
|
|
> -A ppc -O linux -T kernel -C none -a 0 -e 0 \
|
|
|
|
> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux \
|
|
|
|
> examples/uImage.TQM850L-uncompressed
|
|
|
|
Image Name: 2.4.4 kernel for TQM850L
|
|
|
|
Created: Wed Jul 19 02:34:59 2000
|
|
|
|
Image Type: PowerPC Linux Kernel Image (uncompressed)
|
|
|
|
Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
|
|
|
|
Load Address: 0x00000000
|
|
|
|
Entry Point: 0x00000000
|
|
|
|
|
|
|
|
|
|
|
|
Similar you can build U-Boot images from a 'ramdisk.image.gz' file
|
|
|
|
when your kernel is intended to use an initial ramdisk:
|
|
|
|
|
|
|
|
-> tools/mkimage -n 'Simple Ramdisk Image' \
|
|
|
|
> -A ppc -O linux -T ramdisk -C gzip \
|
|
|
|
> -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
|
|
|
|
Image Name: Simple Ramdisk Image
|
|
|
|
Created: Wed Jan 12 14:01:50 2000
|
|
|
|
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
|
|
|
|
Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
|
|
|
|
Load Address: 0x00000000
|
|
|
|
Entry Point: 0x00000000
|
|
|
|
|
|
|
|
|
|
|
|
Installing a Linux Image:
|
|
|
|
-------------------------
|
|
|
|
|
|
|
|
To downloading a U-Boot image over the serial (console) interface,
|
|
|
|
you must convert the image to S-Record format:
|
|
|
|
|
|
|
|
objcopy -I binary -O srec examples/image examples/image.srec
|
|
|
|
|
|
|
|
The 'objcopy' does not understand the information in the U-Boot
|
|
|
|
image header, so the resulting S-Record file will be relative to
|
|
|
|
address 0x00000000. To load it to a given address, you need to
|
|
|
|
specify the target address as 'offset' parameter with the 'loads'
|
|
|
|
command.
|
|
|
|
|
|
|
|
Example: install the image to address 0x40100000 (which on the
|
|
|
|
TQM8xxL is in the first Flash bank):
|
|
|
|
|
|
|
|
=> erase 40100000 401FFFFF
|
|
|
|
|
|
|
|
.......... done
|
|
|
|
Erased 8 sectors
|
|
|
|
|
|
|
|
=> loads 40100000
|
|
|
|
## Ready for S-Record download ...
|
|
|
|
~>examples/image.srec
|
|
|
|
1 2 3 4 5 6 7 8 9 10 11 12 13 ...
|
|
|
|
...
|
|
|
|
15989 15990 15991 15992
|
|
|
|
[file transfer complete]
|
|
|
|
[connected]
|
|
|
|
## Start Addr = 0x00000000
|
|
|
|
|
|
|
|
|
|
|
|
You can check the success of the download using the 'iminfo' command;
|
|
|
|
this includes a checksum verification so you can be sure no data
|
|
|
|
corruption happened:
|
|
|
|
|
|
|
|
=> imi 40100000
|
|
|
|
|
|
|
|
## Checking Image at 40100000 ...
|
|
|
|
Image Name: 2.2.13 for initrd on TQM850L
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 335725 Bytes = 327 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 0000000c
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
|
|
|
|
|
|
|
|
Boot Linux:
|
|
|
|
-----------
|
|
|
|
|
|
|
|
The "bootm" command is used to boot an application that is stored in
|
|
|
|
memory (RAM or Flash). In case of a Linux kernel image, the contents
|
|
|
|
of the "bootargs" environment variable is passed to the kernel as
|
|
|
|
parameters. You can check and modify this variable using the
|
|
|
|
"printenv" and "setenv" commands:
|
|
|
|
|
|
|
|
|
|
|
|
=> printenv bootargs
|
|
|
|
bootargs=root=/dev/ram
|
|
|
|
|
|
|
|
=> setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
|
|
|
|
|
|
|
|
=> printenv bootargs
|
|
|
|
bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
|
|
|
|
|
|
|
|
=> bootm 40020000
|
|
|
|
## Booting Linux kernel at 40020000 ...
|
|
|
|
Image Name: 2.2.13 for NFS on TQM850L
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 381681 Bytes = 372 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 0000000c
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
Uncompressing Kernel Image ... OK
|
|
|
|
Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
|
|
|
|
Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
|
|
|
|
time_init: decrementer frequency = 187500000/60
|
|
|
|
Calibrating delay loop... 49.77 BogoMIPS
|
|
|
|
Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
|
|
|
|
...
|
|
|
|
|
|
|
|
If you want to boot a Linux kernel with initial ram disk, you pass
|
|
|
|
the memory addresses of both the kernel and the initrd image (PPBCOOT
|
|
|
|
format!) to the "bootm" command:
|
|
|
|
|
|
|
|
=> imi 40100000 40200000
|
|
|
|
|
|
|
|
## Checking Image at 40100000 ...
|
|
|
|
Image Name: 2.2.13 for initrd on TQM850L
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 335725 Bytes = 327 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 0000000c
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
|
|
|
|
## Checking Image at 40200000 ...
|
|
|
|
Image Name: Simple Ramdisk Image
|
|
|
|
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
|
|
|
|
Data Size: 566530 Bytes = 553 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 00000000
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
|
|
|
|
=> bootm 40100000 40200000
|
|
|
|
## Booting Linux kernel at 40100000 ...
|
|
|
|
Image Name: 2.2.13 for initrd on TQM850L
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 335725 Bytes = 327 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 0000000c
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
Uncompressing Kernel Image ... OK
|
|
|
|
## Loading RAMDisk Image at 40200000 ...
|
|
|
|
Image Name: Simple Ramdisk Image
|
|
|
|
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
|
|
|
|
Data Size: 566530 Bytes = 553 kB = 0 MB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 00000000
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
Loading Ramdisk ... OK
|
|
|
|
Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
|
|
|
|
Boot arguments: root=/dev/ram
|
|
|
|
time_init: decrementer frequency = 187500000/60
|
|
|
|
Calibrating delay loop... 49.77 BogoMIPS
|
|
|
|
...
|
|
|
|
RAMDISK: Compressed image found at block 0
|
|
|
|
VFS: Mounted root (ext2 filesystem).
|
|
|
|
|
|
|
|
bash#
|
|
|
|
|
|
|
|
Boot Linux and pass a flat device tree:
|
|
|
|
-----------
|
|
|
|
|
|
|
|
First, U-Boot must be compiled with the appropriate defines. See the section
|
|
|
|
titled "Linux Kernel Interface" above for a more in depth explanation. The
|
|
|
|
following is an example of how to start a kernel and pass an updated
|
|
|
|
flat device tree:
|
|
|
|
|
|
|
|
=> print oftaddr
|
|
|
|
oftaddr=0x300000
|
|
|
|
=> print oft
|
|
|
|
oft=oftrees/mpc8540ads.dtb
|
|
|
|
=> tftp $oftaddr $oft
|
|
|
|
Speed: 1000, full duplex
|
|
|
|
Using TSEC0 device
|
|
|
|
TFTP from server 192.168.1.1; our IP address is 192.168.1.101
|
|
|
|
Filename 'oftrees/mpc8540ads.dtb'.
|
|
|
|
Load address: 0x300000
|
|
|
|
Loading: #
|
|
|
|
done
|
|
|
|
Bytes transferred = 4106 (100a hex)
|
|
|
|
=> tftp $loadaddr $bootfile
|
|
|
|
Speed: 1000, full duplex
|
|
|
|
Using TSEC0 device
|
|
|
|
TFTP from server 192.168.1.1; our IP address is 192.168.1.2
|
|
|
|
Filename 'uImage'.
|
|
|
|
Load address: 0x200000
|
|
|
|
Loading:############
|
|
|
|
done
|
|
|
|
Bytes transferred = 1029407 (fb51f hex)
|
|
|
|
=> print loadaddr
|
|
|
|
loadaddr=200000
|
|
|
|
=> print oftaddr
|
|
|
|
oftaddr=0x300000
|
|
|
|
=> bootm $loadaddr - $oftaddr
|
|
|
|
## Booting image at 00200000 ...
|
|
|
|
Image Name: Linux-2.6.17-dirty
|
|
|
|
Image Type: PowerPC Linux Kernel Image (gzip compressed)
|
|
|
|
Data Size: 1029343 Bytes = 1005.2 kB
|
|
|
|
Load Address: 00000000
|
|
|
|
Entry Point: 00000000
|
|
|
|
Verifying Checksum ... OK
|
|
|
|
Uncompressing Kernel Image ... OK
|
|
|
|
Booting using flat device tree at 0x300000
|
|
|
|
Using MPC85xx ADS machine description
|
|
|
|
Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
|
|
|
|
[snip]
|
|
|
|
|
|
|
|
|
|
|
|
More About U-Boot Image Types:
|
|
|
|
------------------------------
|
|
|
|
|
|
|
|
U-Boot supports the following image types:
|
|
|
|
|
|
|
|
"Standalone Programs" are directly runnable in the environment
|
|
|
|
provided by U-Boot; it is expected that (if they behave
|
|
|
|
well) you can continue to work in U-Boot after return from
|
|
|
|
the Standalone Program.
|
|
|
|
"OS Kernel Images" are usually images of some Embedded OS which
|
|
|
|
will take over control completely. Usually these programs
|
|
|
|
will install their own set of exception handlers, device
|
|
|
|
drivers, set up the MMU, etc. - this means, that you cannot
|
|
|
|
expect to re-enter U-Boot except by resetting the CPU.
|
|
|
|
"RAMDisk Images" are more or less just data blocks, and their
|
|
|
|
parameters (address, size) are passed to an OS kernel that is
|
|
|
|
being started.
|
|
|
|
"Multi-File Images" contain several images, typically an OS
|
|
|
|
(Linux) kernel image and one or more data images like
|
|
|
|
RAMDisks. This construct is useful for instance when you want
|
|
|
|
to boot over the network using BOOTP etc., where the boot
|
|
|
|
server provides just a single image file, but you want to get
|
|
|
|
for instance an OS kernel and a RAMDisk image.
|
|
|
|
|
|
|
|
"Multi-File Images" start with a list of image sizes, each
|
|
|
|
image size (in bytes) specified by an "uint32_t" in network
|
|
|
|
byte order. This list is terminated by an "(uint32_t)0".
|
|
|
|
Immediately after the terminating 0 follow the images, one by
|
|
|
|
one, all aligned on "uint32_t" boundaries (size rounded up to
|
|
|
|
a multiple of 4 bytes).
|
|
|
|
|
|
|
|
"Firmware Images" are binary images containing firmware (like
|
|
|
|
U-Boot or FPGA images) which usually will be programmed to
|
|
|
|
flash memory.
|
|
|
|
|
|
|
|
"Script files" are command sequences that will be executed by
|
|
|
|
U-Boot's command interpreter; this feature is especially
|
|
|
|
useful when you configure U-Boot to use a real shell (hush)
|
|
|
|
as command interpreter.
|
|
|
|
|
|
|
|
|
|
|
|
Standalone HOWTO:
|
|
|
|
=================
|
|
|
|
|
|
|
|
One of the features of U-Boot is that you can dynamically load and
|
|
|
|
run "standalone" applications, which can use some resources of
|
|
|
|
U-Boot like console I/O functions or interrupt services.
|
|
|
|
|
|
|
|
Two simple examples are included with the sources:
|
|
|
|
|
|
|
|
"Hello World" Demo:
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
'examples/hello_world.c' contains a small "Hello World" Demo
|
|
|
|
application; it is automatically compiled when you build U-Boot.
|
|
|
|
It's configured to run at address 0x00040004, so you can play with it
|
|
|
|
like that:
|
|
|
|
|
|
|
|
=> loads
|
|
|
|
## Ready for S-Record download ...
|
|
|
|
~>examples/hello_world.srec
|
|
|
|
1 2 3 4 5 6 7 8 9 10 11 ...
|
|
|
|
[file transfer complete]
|
|
|
|
[connected]
|
|
|
|
## Start Addr = 0x00040004
|
|
|
|
|
|
|
|
=> go 40004 Hello World! This is a test.
|
|
|
|
## Starting application at 0x00040004 ...
|
|
|
|
Hello World
|
|
|
|
argc = 7
|
|
|
|
argv[0] = "40004"
|
|
|
|
argv[1] = "Hello"
|
|
|
|
argv[2] = "World!"
|
|
|
|
argv[3] = "This"
|
|
|
|
argv[4] = "is"
|
|
|
|
argv[5] = "a"
|
|
|
|
argv[6] = "test."
|
|
|
|
argv[7] = "<NULL>"
|
|
|
|
Hit any key to exit ...
|
|
|
|
|
|
|
|
## Application terminated, rc = 0x0
|
|
|
|
|
|
|
|
Another example, which demonstrates how to register a CPM interrupt
|
|
|
|
handler with the U-Boot code, can be found in 'examples/timer.c'.
|
|
|
|
Here, a CPM timer is set up to generate an interrupt every second.
|
|
|
|
The interrupt service routine is trivial, just printing a '.'
|
|
|
|
character, but this is just a demo program. The application can be
|
|
|
|
controlled by the following keys:
|
|
|
|
|
|
|
|
? - print current values og the CPM Timer registers
|
|
|
|
b - enable interrupts and start timer
|
|
|
|
e - stop timer and disable interrupts
|
|
|
|
q - quit application
|
|
|
|
|
|
|
|
=> loads
|
|
|
|
## Ready for S-Record download ...
|
|
|
|
~>examples/timer.srec
|
|
|
|
1 2 3 4 5 6 7 8 9 10 11 ...
|
|
|
|
[file transfer complete]
|
|
|
|
[connected]
|
|
|
|
## Start Addr = 0x00040004
|
|
|
|
|
|
|
|
=> go 40004
|
|
|
|
## Starting application at 0x00040004 ...
|
|
|
|
TIMERS=0xfff00980
|
|
|
|
Using timer 1
|
|
|
|
tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
|
|
|
|
|
|
|
|
Hit 'b':
|
|
|
|
[q, b, e, ?] Set interval 1000000 us
|
|
|
|
Enabling timer
|
|
|
|
Hit '?':
|
|
|
|
[q, b, e, ?] ........
|
|
|
|
tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
|
|
|
|
Hit '?':
|
|
|
|
[q, b, e, ?] .
|
|
|
|
tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
|
|
|
|
Hit '?':
|
|
|
|
[q, b, e, ?] .
|
|
|
|
tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
|
|
|
|
Hit '?':
|
|
|
|
[q, b, e, ?] .
|
|
|
|
tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
|
|
|
|
Hit 'e':
|
|
|
|
[q, b, e, ?] ...Stopping timer
|
|
|
|
Hit 'q':
|
|
|
|
[q, b, e, ?] ## Application terminated, rc = 0x0
|
|
|
|
|
|
|
|
|
|
|
|
Minicom warning:
|
|
|
|
================
|
|
|
|
|
|
|
|
Over time, many people have reported problems when trying to use the
|
|
|
|
"minicom" terminal emulation program for serial download. I (wd)
|
|
|
|
consider minicom to be broken, and recommend not to use it. Under
|
|
|
|
Unix, I recommend to use C-Kermit for general purpose use (and
|
|
|
|
especially for kermit binary protocol download ("loadb" command), and
|
|
|
|
use "cu" for S-Record download ("loads" command).
|
|
|
|
|
|
|
|
Nevertheless, if you absolutely want to use it try adding this
|
|
|
|
configuration to your "File transfer protocols" section:
|
|
|
|
|
|
|
|
Name Program Name U/D FullScr IO-Red. Multi
|
|
|
|
X kermit /usr/bin/kermit -i -l %l -s Y U Y N N
|
|
|
|
Y kermit /usr/bin/kermit -i -l %l -r N D Y N N
|
|
|
|
|
|
|
|
|
|
|
|
NetBSD Notes:
|
|
|
|
=============
|
|
|
|
|
|
|
|
Starting at version 0.9.2, U-Boot supports NetBSD both as host
|
|
|
|
(build U-Boot) and target system (boots NetBSD/mpc8xx).
|
|
|
|
|
|
|
|
Building requires a cross environment; it is known to work on
|
|
|
|
NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
|
|
|
|
need gmake since the Makefiles are not compatible with BSD make).
|
|
|
|
Note that the cross-powerpc package does not install include files;
|
|
|
|
attempting to build U-Boot will fail because <machine/ansi.h> is
|
|
|
|
missing. This file has to be installed and patched manually:
|
|
|
|
|
|
|
|
# cd /usr/pkg/cross/powerpc-netbsd/include
|
|
|
|
# mkdir powerpc
|
|
|
|
# ln -s powerpc machine
|
|
|
|
# cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
|
|
|
|
# ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
|
|
|
|
|
|
|
|
Native builds *don't* work due to incompatibilities between native
|
|
|
|
and U-Boot include files.
|
|
|
|
|
|
|
|
Booting assumes that (the first part of) the image booted is a
|
|
|
|
stage-2 loader which in turn loads and then invokes the kernel
|
|
|
|
proper. Loader sources will eventually appear in the NetBSD source
|
|
|
|
tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
|
|
|
|
meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
|
|
|
|
|
|
|
|
|
|
|
|
Implementation Internals:
|
|
|
|
=========================
|
|
|
|
|
|
|
|
The following is not intended to be a complete description of every
|
|
|
|
implementation detail. However, it should help to understand the
|
|
|
|
inner workings of U-Boot and make it easier to port it to custom
|
|
|
|
hardware.
|
|
|
|
|
|
|
|
|
|
|
|
Initial Stack, Global Data:
|
|
|
|
---------------------------
|
|
|
|
|
|
|
|
The implementation of U-Boot is complicated by the fact that U-Boot
|
|
|
|
starts running out of ROM (flash memory), usually without access to
|
|
|
|
system RAM (because the memory controller is not initialized yet).
|
|
|
|
This means that we don't have writable Data or BSS segments, and BSS
|
|
|
|
is not initialized as zero. To be able to get a C environment working
|
|
|
|
at all, we have to allocate at least a minimal stack. Implementation
|
|
|
|
options for this are defined and restricted by the CPU used: Some CPU
|
|
|
|
models provide on-chip memory (like the IMMR area on MPC8xx and
|
|
|
|
MPC826x processors), on others (parts of) the data cache can be
|
|
|
|
locked as (mis-) used as memory, etc.
|
|
|
|
|
|
|
|
Chris Hallinan posted a good summary of these issues to the
|
|
|
|
u-boot-users mailing list:
|
|
|
|
|
|
|
|
Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
|
|
|
|
From: "Chris Hallinan" <clh@net1plus.com>
|
|
|
|
Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
|
|
|
|
...
|
|
|
|
|
|
|
|
Correct me if I'm wrong, folks, but the way I understand it
|
|
|
|
is this: Using DCACHE as initial RAM for Stack, etc, does not
|
|
|
|
require any physical RAM backing up the cache. The cleverness
|
|
|
|
is that the cache is being used as a temporary supply of
|
|
|
|
necessary storage before the SDRAM controller is setup. It's
|
|
|
|
beyond the scope of this list to expain the details, but you
|
|
|
|
can see how this works by studying the cache architecture and
|
|
|
|
operation in the architecture and processor-specific manuals.
|
|
|
|
|
|
|
|
OCM is On Chip Memory, which I believe the 405GP has 4K. It
|
|
|
|
is another option for the system designer to use as an
|
|
|
|
initial stack/ram area prior to SDRAM being available. Either
|
|
|
|
option should work for you. Using CS 4 should be fine if your
|
|
|
|
board designers haven't used it for something that would
|
|
|
|
cause you grief during the initial boot! It is frequently not
|
|
|
|
used.
|
|
|
|
|
|
|
|
CFG_INIT_RAM_ADDR should be somewhere that won't interfere
|
|
|
|
with your processor/board/system design. The default value
|
|
|
|
you will find in any recent u-boot distribution in
|
|
|
|
walnut.h should work for you. I'd set it to a value larger
|
|
|
|
than your SDRAM module. If you have a 64MB SDRAM module, set
|
|
|
|
it above 400_0000. Just make sure your board has no resources
|
|
|
|
that are supposed to respond to that address! That code in
|
|
|
|
start.S has been around a while and should work as is when
|
|
|
|
you get the config right.
|
|
|
|
|
|
|
|
-Chris Hallinan
|
|
|
|
DS4.COM, Inc.
|
|
|
|
|
|
|
|
It is essential to remember this, since it has some impact on the C
|
|
|
|
code for the initialization procedures:
|
|
|
|
|
|
|
|
* Initialized global data (data segment) is read-only. Do not attempt
|
|
|
|
to write it.
|
|
|
|
|
|
|
|
* Do not use any unitialized global data (or implicitely initialized
|
|
|
|
as zero data - BSS segment) at all - this is undefined, initiali-
|
|
|
|
zation is performed later (when relocating to RAM).
|
|
|
|
|
|
|
|
* Stack space is very limited. Avoid big data buffers or things like
|
|
|
|
that.
|
|
|
|
|
|
|
|
Having only the stack as writable memory limits means we cannot use
|
|
|
|
normal global data to share information beween the code. But it
|
|
|
|
turned out that the implementation of U-Boot can be greatly
|
|
|
|
simplified by making a global data structure (gd_t) available to all
|
|
|
|
functions. We could pass a pointer to this data as argument to _all_
|
|
|
|
functions, but this would bloat the code. Instead we use a feature of
|
|
|
|
the GCC compiler (Global Register Variables) to share the data: we
|
|
|
|
place a pointer (gd) to the global data into a register which we
|
|
|
|
reserve for this purpose.
|
|
|
|
|
|
|
|
When choosing a register for such a purpose we are restricted by the
|
|
|
|
relevant (E)ABI specifications for the current architecture, and by
|
|
|
|
GCC's implementation.
|
|
|
|
|
|
|
|
For PowerPC, the following registers have specific use:
|
|
|
|
R1: stack pointer
|
|
|
|
R2: reserved for system use
|
|
|
|
R3-R4: parameter passing and return values
|
|
|
|
R5-R10: parameter passing
|
|
|
|
R13: small data area pointer
|
|
|
|
R30: GOT pointer
|
|
|
|
R31: frame pointer
|
|
|
|
|
|
|
|
(U-Boot also uses R14 as internal GOT pointer.)
|
|
|
|
|
|
|
|
==> U-Boot will use R2 to hold a pointer to the global data
|
|
|
|
|
|
|
|
Note: on PPC, we could use a static initializer (since the
|
|
|
|
address of the global data structure is known at compile time),
|
|
|
|
but it turned out that reserving a register results in somewhat
|
|
|
|
smaller code - although the code savings are not that big (on
|
|
|
|
average for all boards 752 bytes for the whole U-Boot image,
|
|
|
|
624 text + 127 data).
|
|
|
|
|
|
|
|
On Blackfin, the normal C ABI (except for P5) is followed as documented here:
|
|
|
|
http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface
|
|
|
|
|
|
|
|
==> U-Boot will use P5 to hold a pointer to the global data
|
|
|
|
|
|
|
|
On ARM, the following registers are used:
|
|
|
|
|
|
|
|
R0: function argument word/integer result
|
|
|
|
R1-R3: function argument word
|
|
|
|
R9: GOT pointer
|
|
|
|
R10: stack limit (used only if stack checking if enabled)
|
|
|
|
R11: argument (frame) pointer
|
|
|
|
R12: temporary workspace
|
|
|
|
R13: stack pointer
|
|
|
|
R14: link register
|
|
|
|
R15: program counter
|
|
|
|
|
|
|
|
==> U-Boot will use R8 to hold a pointer to the global data
|
|
|
|
|
|
|
|
NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
|
|
|
|
or current versions of GCC may "optimize" the code too much.
|
|
|
|
|
|
|
|
Memory Management:
|
|
|
|
------------------
|
|
|
|
|
|
|
|
U-Boot runs in system state and uses physical addresses, i.e. the
|
|
|
|
MMU is not used either for address mapping nor for memory protection.
|
|
|
|
|
|
|
|
The available memory is mapped to fixed addresses using the memory
|
|
|
|
controller. In this process, a contiguous block is formed for each
|
|
|
|
memory type (Flash, SDRAM, SRAM), even when it consists of several
|
|
|
|
physical memory banks.
|
|
|
|
|
|
|
|
U-Boot is installed in the first 128 kB of the first Flash bank (on
|
|
|
|
TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
|
|
|
|
booting and sizing and initializing DRAM, the code relocates itself
|
|
|
|
to the upper end of DRAM. Immediately below the U-Boot code some
|
|
|
|
memory is reserved for use by malloc() [see CFG_MALLOC_LEN
|
|
|
|
configuration setting]. Below that, a structure with global Board
|
|
|
|
Info data is placed, followed by the stack (growing downward).
|
|
|
|
|
|
|
|
Additionally, some exception handler code is copied to the low 8 kB
|
|
|
|
of DRAM (0x00000000 ... 0x00001FFF).
|
|
|
|
|
|
|
|
So a typical memory configuration with 16 MB of DRAM could look like
|
|
|
|
this:
|
|
|
|
|
|
|
|
0x0000 0000 Exception Vector code
|
|
|
|
:
|
|
|
|
0x0000 1FFF
|
|
|
|
0x0000 2000 Free for Application Use
|
|
|
|
:
|
|
|
|
:
|
|
|
|
|
|
|
|
:
|
|
|
|
:
|
|
|
|
0x00FB FF20 Monitor Stack (Growing downward)
|
|
|
|
0x00FB FFAC Board Info Data and permanent copy of global data
|
|
|
|
0x00FC 0000 Malloc Arena
|
|
|
|
:
|
|
|
|
0x00FD FFFF
|
|
|
|
0x00FE 0000 RAM Copy of Monitor Code
|
|
|
|
... eventually: LCD or video framebuffer
|
|
|
|
... eventually: pRAM (Protected RAM - unchanged by reset)
|
|
|
|
0x00FF FFFF [End of RAM]
|
|
|
|
|
|
|
|
|
|
|
|
System Initialization:
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
In the reset configuration, U-Boot starts at the reset entry point
|
|
|
|
(on most PowerPC systens at address 0x00000100). Because of the reset
|
|
|
|
configuration for CS0# this is a mirror of the onboard Flash memory.
|
|
|
|
To be able to re-map memory U-Boot then jumps to its link address.
|
|
|
|
To be able to implement the initialization code in C, a (small!)
|
|
|
|
initial stack is set up in the internal Dual Ported RAM (in case CPUs
|
|
|
|
which provide such a feature like MPC8xx or MPC8260), or in a locked
|
|
|
|
part of the data cache. After that, U-Boot initializes the CPU core,
|
|
|
|
the caches and the SIU.
|
|
|
|
|
|
|
|
Next, all (potentially) available memory banks are mapped using a
|
|
|
|
preliminary mapping. For example, we put them on 512 MB boundaries
|
|
|
|
(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
|
|
|
|
on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
|
|
|
|
programmed for SDRAM access. Using the temporary configuration, a
|
|
|
|
simple memory test is run that determines the size of the SDRAM
|
|
|
|
banks.
|
|
|
|
|
|
|
|
When there is more than one SDRAM bank, and the banks are of
|
|
|
|
different size, the largest is mapped first. For equal size, the first
|
|
|
|
bank (CS2#) is mapped first. The first mapping is always for address
|
|
|
|
0x00000000, with any additional banks following immediately to create
|
|
|
|
contiguous memory starting from 0.
|
|
|
|
|
|
|
|
Then, the monitor installs itself at the upper end of the SDRAM area
|
|
|
|
and allocates memory for use by malloc() and for the global Board
|
|
|
|
Info data; also, the exception vector code is copied to the low RAM
|
|
|
|
pages, and the final stack is set up.
|
|
|
|
|
|
|
|
Only after this relocation will you have a "normal" C environment;
|
|
|
|
until that you are restricted in several ways, mostly because you are
|
|
|
|
running from ROM, and because the code will have to be relocated to a
|
|
|
|
new address in RAM.
|
|
|
|
|
|
|
|
|
|
|
|
U-Boot Porting Guide:
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
[Based on messages by Jerry Van Baren in the U-Boot-Users mailing
|
|
|
|
list, October 2002]
|
|
|
|
|
|
|
|
|
|
|
|
int main (int argc, char *argv[])
|
|
|
|
{
|
|
|
|
sighandler_t no_more_time;
|
|
|
|
|
|
|
|
signal (SIGALRM, no_more_time);
|
|
|
|
alarm (PROJECT_DEADLINE - toSec (3 * WEEK));
|
|
|
|
|
|
|
|
if (available_money > available_manpower) {
|
|
|
|
pay consultant to port U-Boot;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
Download latest U-Boot source;
|
|
|
|
|
|
|
|
Subscribe to u-boot-users mailing list;
|
|
|
|
|
|
|
|
if (clueless) {
|
|
|
|
email ("Hi, I am new to U-Boot, how do I get started?");
|
|
|
|
}
|
|
|
|
|
|
|
|
while (learning) {
|
|
|
|
Read the README file in the top level directory;
|
|
|
|
Read http://www.denx.de/twiki/bin/view/DULG/Manual ;
|
|
|
|
Read the source, Luke;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (available_money > toLocalCurrency ($2500)) {
|
|
|
|
Buy a BDI2000;
|
|
|
|
} else {
|
|
|
|
Add a lot of aggravation and time;
|
|
|
|
}
|
|
|
|
|
|
|
|
Create your own board support subdirectory;
|
|
|
|
|
|
|
|
Create your own board config file;
|
|
|
|
|
|
|
|
while (!running) {
|
|
|
|
do {
|
|
|
|
Add / modify source code;
|
|
|
|
} until (compiles);
|
|
|
|
Debug;
|
|
|
|
if (clueless)
|
|
|
|
email ("Hi, I am having problems...");
|
|
|
|
}
|
|
|
|
Send patch file to Wolfgang;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void no_more_time (int sig)
|
|
|
|
{
|
|
|
|
hire_a_guru();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Coding Standards:
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
All contributions to U-Boot should conform to the Linux kernel
|
|
|
|
coding style; see the file "Documentation/CodingStyle" and the script
|
|
|
|
"scripts/Lindent" in your Linux kernel source directory. In sources
|
|
|
|
originating from U-Boot a style corresponding to "Lindent -pcs" (adding
|
|
|
|
spaces before parameters to function calls) is actually used.
|
|
|
|
|
|
|
|
Source files originating from a different project (for example the
|
|
|
|
MTD subsystem) are generally exempt from these guidelines and are not
|
|
|
|
reformated to ease subsequent migration to newer versions of those
|
|
|
|
sources.
|
|
|
|
|
|
|
|
Please note that U-Boot is implemented in C (and to some small parts in
|
|
|
|
Assembler); no C++ is used, so please do not use C++ style comments (//)
|
|
|
|
in your code.
|
|
|
|
|
|
|
|
Please also stick to the following formatting rules:
|
|
|
|
- remove any trailing white space
|
|
|
|
- use TAB characters for indentation, not spaces
|
|
|
|
- make sure NOT to use DOS '\r\n' line feeds
|
|
|
|
- do not add more than 2 empty lines to source files
|
|
|
|
- do not add trailing empty lines to source files
|
|
|
|
|
|
|
|
Submissions which do not conform to the standards may be returned
|
|
|
|
with a request to reformat the changes.
|
|
|
|
|
|
|
|
|
|
|
|
Submitting Patches:
|
|
|
|
-------------------
|
|
|
|
|
|
|
|
Since the number of patches for U-Boot is growing, we need to
|
|
|
|
establish some rules. Submissions which do not conform to these rules
|
|
|
|
may be rejected, even when they contain important and valuable stuff.
|
|
|
|
|
|
|
|
Patches shall be sent to the u-boot-users mailing list.
|
|
|
|
|
|
|
|
Please see http://www.denx.de/wiki/UBoot/Patches for details.
|
|
|
|
|
|
|
|
When you send a patch, please include the following information with
|
|
|
|
it:
|
|
|
|
|
|
|
|
* For bug fixes: a description of the bug and how your patch fixes
|
|
|
|
this bug. Please try to include a way of demonstrating that the
|
|
|
|
patch actually fixes something.
|
|
|
|
|
|
|
|
* For new features: a description of the feature and your
|
|
|
|
implementation.
|
|
|
|
|
|
|
|
* A CHANGELOG entry as plaintext (separate from the patch)
|
|
|
|
|
|
|
|
* For major contributions, your entry to the CREDITS file
|
|
|
|
|
|
|
|
* When you add support for a new board, don't forget to add this
|
|
|
|
board to the MAKEALL script, too.
|
|
|
|
|
|
|
|
* If your patch adds new configuration options, don't forget to
|
|
|
|
document these in the README file.
|
|
|
|
|
|
|
|
* The patch itself. If you are using git (which is *strongly*
|
|
|
|
recommended) you can easily generate the patch using the
|
|
|
|
"git-format-patch". If you then use "git-send-email" to send it to
|
|
|
|
the U-Boot mailing list, you will avoid most of the common problems
|
|
|
|
with some other mail clients.
|
|
|
|
|
|
|
|
If you cannot use git, use "diff -purN OLD NEW". If your version of
|
|
|
|
diff does not support these options, then get the latest version of
|
|
|
|
GNU diff.
|
|
|
|
|
|
|
|
The current directory when running this command shall be the parent
|
|
|
|
directory of the U-Boot source tree (i. e. please make sure that
|
|
|
|
your patch includes sufficient directory information for the
|
|
|
|
affected files).
|
|
|
|
|
|
|
|
We prefer patches as plain text. MIME attachments are discouraged,
|
|
|
|
and compressed attachments must not be used.
|
|
|
|
|
|
|
|
* If one logical set of modifications affects or creates several
|
|
|
|
files, all these changes shall be submitted in a SINGLE patch file.
|
|
|
|
|
|
|
|
* Changesets that contain different, unrelated modifications shall be
|
|
|
|
submitted as SEPARATE patches, one patch per changeset.
|
|
|
|
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
|
|
|
|
* Before sending the patch, run the MAKEALL script on your patched
|
|
|
|
source tree and make sure that no errors or warnings are reported
|
|
|
|
for any of the boards.
|
|
|
|
|
|
|
|
* Keep your modifications to the necessary minimum: A patch
|
|
|
|
containing several unrelated changes or arbitrary reformats will be
|
|
|
|
returned with a request to re-formatting / split it.
|
|
|
|
|
|
|
|
* If you modify existing code, make sure that your new code does not
|
|
|
|
add to the memory footprint of the code ;-) Small is beautiful!
|
|
|
|
When adding new features, these should compile conditionally only
|
|
|
|
(using #ifdef), and the resulting code with the new feature
|
|
|
|
disabled must not need more memory than the old code without your
|
|
|
|
modification.
|
|
|
|
|
|
|
|
* Remember that there is a size limit of 40 kB per message on the
|
|
|
|
u-boot-users mailing list. Bigger patches will be moderated. If
|
|
|
|
they are reasonable and not bigger than 100 kB, they will be
|
|
|
|
acknowledged. Even bigger patches should be avoided.
|